Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/12/10.1063/1.4902901
1.
1.R. Vesipa, C. Camporeale, and L. Ridolfi, “Transient growths of stable modes in riverbed dynamics,” EPL 100, 64002 (2012).
http://dx.doi.org/10.1209/0295-5075/100/64002
2.
2.M. Colombini and A. Stocchino, “Three-dimensional river bed forms,” J. Fluid Mech. 695, 6380 (2012).
http://dx.doi.org/10.1017/jfm.2011.556
3.
3.F. Nunez-Gonzalez and J. Martin-Vide, “Analysis of antidune migration direction,” J. Geophys. Res. 116, doi: 10.1029/2010JF001761 (published online 2011).
http://dx.doi.org/10.1029/2010JF001761
4.
4.P. Huerre and P. A. Monkevitz, “Local and global instabilities in spatially developing flows,” Annu. Rev. Fluid Mech. 22, 473537 (1990).
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
5.
5.B. Federici and G. Seminara, “On the convective nature of bar instability,” J. Fluid Mech. 487, 125145 (2003).
http://dx.doi.org/10.1017/S0022112003004737
6.
6.C. Camporeale and L. Ridolfi, “Convective nature of the planimetric instability in meandering river dynamics,” Phys. Rev. E 73, 026311 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.026311
7.
7.J. Shaw and R. Kellerhals, “Paleohydraulic interpretation of antidune bedforms with applications to antidunes in gravel,” J. Sediment. Petrol. 47, 57266 (1977).
http://dx.doi.org/10.1306/212F7149-2B24-11D7-8648000102C1865D
8.
8.K. Kupfer, A. Bers, and A. K. Ram, “The cusp map in the complex-frequency plane for absolute instabilities,” Phys. Fluids 30, 30753082 (1987).
http://dx.doi.org/10.1063/1.866483
9.
9.J. F. Kennedy, “The mechanics of dunes and antidunes in erodible-bed channels,” J. Fluid Mech. 16, 521544 (1963).
http://dx.doi.org/10.1017/S0022112063000975
10.
10.K. J. Richards, “The formation of ripples and dunes on an erodible bed,” J. Fluid Mech. 99, 597618 (1980).
http://dx.doi.org/10.1017/S002211208000078X
11.
11.S. E. Coleman and J. D. Fenton, “Potential-flow instability theory and alluvial stream bed forms,” J. Fluid Mech. 418, 101117 (2000).
http://dx.doi.org/10.1017/S0022112000001099
12.
12.M. Colombini, “Revisiting the linear theory of sand dunes,” J. Fluid Mech. 502, 116 (2004).
http://dx.doi.org/10.1017/S0022112003007201
13.
13.J. Best, “The fluid dynamics of river dunes: A review and some future research directions,” J. Geophys. Res. 110 , doi: 10.1029/2004JF000218 (published online 2005).
http://dx.doi.org/10.1029/2004JF000218
14.
14.A. Fourriere, P. Claudin, and B. Andreotti, “Bedforms in a turbulent stream: Formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening,” J. Fluid Mech. 649, 287328 (2010).
http://dx.doi.org/10.1017/S0022112009993466
15.
15.G. Seminara, “Fluvial sedimentary patterns,” Annu. Rev. Fluid Mech. 42, 4366 (2010).
http://dx.doi.org/10.1146/annurev-fluid-121108-145612
16.
16.E. Lajeunesse, L. Malverti, P. Lancien, F. Metivier, S. Coleman, C. E. Smith, T. Davies, A. Cantelli, and G. Parker, “Fluvial and submarine morphodynamics of laminar and near-laminar flows: A synthesis,” Sedimentology 57(1), 126 (2010).
http://dx.doi.org/10.1111/j.1365-3091.2009.01109.x
17.
17.M. Colombini and A. Stocchino, “Ripple and dune formation in rivers,” J. Fluid Mech. 673, 121131 (2011).
http://dx.doi.org/10.1017/S0022112011000048
18.
18.G. Seminara, L. Solari, and G. Parker, “Bed load at low shields stress on arbitrarily sloping beds: Failure of the bagnold hypothesis,” Water Resour. Res. 38(11), 1249 (2002).
http://dx.doi.org/10.1029/2001WR000681
19.
19.G. Parker, G. Seminara, and L. Solari, “Bed load at low shields stress on arbitrarily sloping beds: Alternative entrainment formulation,” Water Resour. Res. 39(7), 1183 (2003).
http://dx.doi.org/10.1029/2001WR001253
20.
20.F. Charru, B. Andreotti, and P. Claudin, “Sand ripples and dunes,” Annu. Rev. Fluid Mech. 45, 469493 (2013).
http://dx.doi.org/10.1146/annurev-fluid-011212-140806
21.
21.C. Camporeale and L. Ridolfi, “Modal versus nonmodal linear stability analysis of river dunes,” Phys. Fluids 23, 104102 (2011).
http://dx.doi.org/10.1063/1.3644673
22.
22.H. P. Guy, D. B. Simons, and E. V. Richardson, “Summary of alluvial channel data from flume experiments,” U.S. Geol. Surv. Prof. Pap. 462-I, 196 (1966).
23.
23.M. Colombini and A. Stocchino, “Finite amplitude river dunes,” J. Fluid Mech. 611, 283306 (2008).
http://dx.doi.org/10.1017/S0022112008002814
24.
24.J. G. Venditti, M. A. Church, and S. J. Bennett, “Bed form initiation from a flat sand bed,” J. Geophys. Res. 110 , doi: 10.1029/2004JF000149 (published online 2005).
http://dx.doi.org/10.1029/2004JF000149
25.
25.S. Giri and Y. Shimizu, “Numerical computation of sand dune migration with free surface flow,” Water Resour. Res. 42 (2006).
http://dx.doi.org/10.1029/2005WR004588
26.
26.S. E. Coleman and B. W. Melville, “Initiation of bed forms on a flat sand bed,” J. Hydraul. Div., Am. Soc. Civ. Eng. 122, 301310 (1996).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1996)122:6(301)
27.
27.J. G. Venditti, M. Church, and S. J. Bennett, “On the transition between 2d and 3d dunes,” Sedimentology 52, 13431359 (2005).
http://dx.doi.org/10.1111/j.1365-3091.2005.00748.x
28.
28.S. Pope, Turbulent Flows, 1st ed. (Cambridge University Press, 2000).
29.
29.I. Nezu and W. Rodi, “Open-channel flow measurements with a laser doppler anemometer,” J. Hydraul. Eng.-ASCE 112(5), 335355 (2005).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335)
30.
30.F. M. Exner, Uber die Wechselwirkung zwischen Wasser und Geschiebe in Flussen, 1st ed. (Sitzber. Akad. Wiss Wien, 1925).
31.
31.J. Fredsoe, “On the development of dunes in erodible channels,” J. Fluid Mech. 64, 116 (1974).
http://dx.doi.org/10.1017/S0022112074001960
32.
32.G. Parker, “Sediment inertia as cause of river antidunes,” J. Hydraul. Div.-ASCE 101(2), 211221 (1975).
33.
33.M. Sekine and H. Kikkawa, “Mechanics of saltating grains,” J. Hydraul. Div., Am. Soc. Civ. Eng. 118, 536558 (1992).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:4(536)
34.
34.H. Y. Lee and I. S. Hsu, “Investigation of saltating particle motion,” J. Hydraul. Eng. 120, 831845 (1994).
http://dx.doi.org/10.1061/(ASCE)0733-9429(1994)120:7(831)
35.
35.P. Schmid and D. Henningson, Stability and Transition in Shear Flows, 1st ed. (Springer, 2001).
36.
36.C. Camporeale, C. Canuto, and L. Ridolfi, “A spectral approach for the stability analysis of turbulent open-channel flows over granular beds,” Theor. Comput. Fluid Dyn. 26, 5180 (2012).
http://dx.doi.org/10.1007/s00162-011-0223-0
37.
37.A. Bers, “Space-time evolution of plasma instabilities – absolute and convective,” in Handbook of Plasma Physics (North Holland, Amsterdam, 1983).
38.
38.P. Huerre and M. Rossi, “Hydrodynamic instabilities in open flows,” in Hydrodynamic and Instabilities, edited by C. Goldreche and P. Manneville (Cambridge University Press, Cambridge, 2000), pp. 159229.
39.
39.H. Derfler, “Frequency cusp, a menas for discriminating between convective and nonconvectibe instability,” Phys. Rev. A 1, 14671471 (1970).
http://dx.doi.org/10.1103/PhysRevA.1.1467
40.
40.Q. D. Zhang, B. C. Khoo, and K. S. Yeo, “A numerical study of the effect of free surface and water depth on the stability of wakes: Use of gdq formulation,” Int. J. Numer. Methods Fluids 24, 10791090 (1997).
http://dx.doi.org/10.1002/(SICI)1097-0363(19970615)24:11<1079::AID-FLD489>3.0.CO;2-B
41.
41.M. Gaster, “A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability,” J. Fluid Mech. 14, 222224 (1962).
http://dx.doi.org/10.1017/S0022112062001184
42.
42.P. Gao, “Transition between two bed-load transport regimes: Saltation and sheet flow,” J. Hydraul. Div., Am. Soc. Civ. Eng. 134, 340349 (2008).
http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:3(340)
43.
43.H. Nakagawa and T. Tsujimoto, “Sand bed instability due to bed load motion,” J. Hydraul. Div., Am. Soc. Civ. Eng. 106, 2029205 (1980).
44.
44.G. Middleton, “Antidune cross-bedding in a large flume,” J. Sediment. Res. 35, 922927 (1965).
http://dx.doi.org/10.1306/74D713AC-2B21-11D7-8648000102C1865D
45.
45.B. Rust and M. Gibling, “3-Dimensional antidunes as HCS mimics in a fluvial sandstone - the Pennsylvanian South bar formation near Sydney, Nova-Scotia,” J. Sediment. Petrol. 60, 540548 (1990).
http://dx.doi.org/10.1306/212F91D8-2B24-11D7-8648000102C1865D
46.
46.J. M. Chomaz, “Global instabilities in spatially developing flows: Non-normality and nonlinearity,” Annu. Rev. Fluid Mech. 37, 357392 (2005).
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175810
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/12/10.1063/1.4902901
Loading
/content/aip/journal/pof2/26/12/10.1063/1.4902901
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/12/10.1063/1.4902901
2014-12-09
2016-12-11

Abstract

River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/12/1.4902901.html;jsessionid=fx_1vBTT-dJB1Wzt2ghlfgJQ.x-aip-live-06?itemId=/content/aip/journal/pof2/26/12/10.1063/1.4902901&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/12/10.1063/1.4902901&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/12/10.1063/1.4902901'
Right1,Right2,Right3,