Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. A. Millikan, “On the elementary electrical charge and the Avogadro constant,” Phys. Rev. 2, 109143 (1913).
2.J. C. Baygents and D. A. Saville, “Electrophoresis of drops and bubbles,” J. Chem. Soc., Faraday Trans. 87, 18831898 (1991).
3.D. J. Im, J. Noh, D. Moon, and I. Kang, “Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation,” Anal. Chem. 83, 51685174 (2011).
4.F. Mugele, M. Duits, and D. van den Ende, “Electrowetting: A versatile tool for drop manipulation, generation, and characterization,” Adv. Colloid Interface Sci. 161, 115123 (2005).
5.M. G. Pollack, R. B. Fair, and A. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77, 17251726 (2000).
6.R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?,” Microfluid. Nanofluid. 3, 245281 (2007).
7.H. A. Pohl, Dielectrophoresis: The Behaviour of Neutral Matter in Non-Uniform Electric Fields (Cambridge University Press, 1978).
8.R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
9.L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 6th ed. (Elsevier, 1987).
10.K. H. Kang, “How electrostatic fields change contact angle in electrowetting,” Langmuir 18, 1031810322 (2002).
11.L. Y. Yeo and H.-C. Chang, “Static and spontaneous electrowetting,” Mod. Phys. Lett. B 19, 549569 (2005).
12.T. B. Jones, “Liquid dielectrophoresis on the microscale,” J. Electrost. 51–52, 290299 (2001).
13.K. L. Wang, T. B. Jones, and A. Raisanen, “DEP actuated nanoliter droplet dispensing using feedback control,” Lab Chip 9, 901909 (2009).
14.C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3, 403405 (2009).
15.A. Klingner, S. Herminghaus, and F. Mugele, “Self-excited oscillatory dynamics of capillary bridges in electric fields,” Appl. Phys. Lett. 82, 41874189 (2003).
16.A. Klingner, J. Buehrle, and F. Mugele, “Capillary bridges in electric fields,” Langmuir 20, 67706777 (2004).
17.G. I. Taylor, “Disintegration of water drops in an electric field,” Proc. R. Soc. London A 280, 383397 (1964).
18.O. A. Basaran and L. E. Scriven, “Axisymmetric shapes and stability of pendant and sessile drops in an electric field,” J. Colloid Interface Sci. 140, 1030 (1990).
19.S. N. Reznik, A. L. Yarin, A. Theron, and E. Zussman, “Transient and steady shapes of droplets attached to a surface in a strong electric field,” J. Fluid Mech. 516, 349377 (2004).
20.C. Roero, “Contact-Angle Measurements of Sessile Drops Deformed by a DC Electric Field,” in Contact Angle, Wettability and Adhesion, edited by K. L. Mittal (CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, 2006), Vol. 4, pp. 165176.
21.A. Bateni, S. Susnar, A. Amirfazli, and A. Neumann, “Development of a new methodology to study drop shape and surface tension in electric fields,” Langmuir 20, 75897597 (2004).
22.A. Bateni, A. Ababneh, J. A. W. Elliott, A. Neumann, and A. Amirfazli, “Effect of gravity and electric field on shape and surface tension of drops,” Adv. Space Res. 36, 6469 (2005).
23.J. M. Roux, J. L. Achard, and Y. Fouillet, “Forces and charges on an undeformable droplet in the DC field of a plate condenser,” J. Electrost. 66, 283293 (2008).
24.A. Bateni, S. Laughton, H. Tavana, S. Susnar, A. Amirfazli, and A. Neumann, “Effect of electric fields on contact angle and surface tension of drops,” J. Colloid Interface Sci. 283, 215222 (2005).
25.A. Bateni, A. Amirfazli, and A. Neumann, “Effects of an electric field on the surface tension of conducting drops,” Colloids Surf., A 289, 2538 (2006).
26.C. Tsakonas, L. Corson, I. C. Sage, and C. V. Brown, “Electric field induced deformation of hemispherical sessile drops of ionic liquid,” J. Electrost. 72, 437440 (2014).
27.V. Vancauwenberghe, P. Di Marco, and D. Brutin, “Wetting and evaporation of a sessile drop under an external electric field: A review,” Colloids Surf., A 432, 5056 (2013).
28.F. K. Wohlhuter and O. A. Basaran, “Shapes and stability of pendant and sessile dielectric drops in an electric field,” J. Fluid Mech. 235, 481510 (1992).
29.O. A. Basaran and F. K. Wohlhuter, “Effect of nonlinear polarization on shapes and stability of pendant and sessile drops in an electric (magnetic) field,” J. Fluid Mech. 244, 116 (1992).
30.C. Ferrera, J. M. López-Herrera, M. A. Herrada, J. M. Montanero, and A. J. Acero, “Dynamical behavior of electrified pendant drops,” Phys. Fluids 25, 012104 (2013).
31.Y.-H. Yu, A. N. Soriano, and M.-H. Li, “Heat capacity and electrical conductivity of aqueous mixtures of [Bmim][BF4] and [Bmim][PF6],” J. Taiwan Inst. Chem. Eng. 40, 205212 (2009).
32.Y. Chauvin, L. Mussmann, and H. Olivier, “A novel class of versatile solvents for two-phase catalysis: Hydrogenation, isomerization, and hydroformylation of alkenes catalysed by rhodium complexes in liquid 1,3-dialkylimidazolium salts,” Angew. Chem., Int. Ed. Engl. 34, 26982700 (1995).
33.P. A. Z. Suarez, J. E. L. Dullins, S. Einloft, R. F. D. Souza, and J. Dupont, “The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes,” Polyhedron 15, 12171219 (1996).
34.Z. Fei and P. J. Dyson, “The making of iLiquids - the chemist’s equivalent of the iPhone,” Chem. Commun. 49, 25942596 (2013).
35.A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 4th ed. (John Wiley & Sons, Inc., 1997).
36.J. G. Huddleston, A. E. Visser, W. M. Reichert, H. Willauer, G. A. Broker, and R. D. Rogers, “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation,” Green Chem. 3, 156164 (2001).
37.MATLAB, version 8.1, R2013a, The MathWorks, Inc., Natick, Massachusetts, 2013.
38. The charge relaxation time of BMIMTFB can be estimated from literature values of its conductivity31 σ and its relative permittivity at room temperature39 ϵ1 = ϵfluid/ϵ0, where ϵ0 is the permittivity of free space, to be of the order of ϵ0ϵ1/σ ≃ 10−5 − 10−6 s−1, which is small compared to the reciprocal of the frequency of the field, 10−3 s−1.
39.J. Sangoro, C. Iacob, A. Serghei, S. Naumov, P. Galvosas, J. Kärger, C. Wespe, F. Bordusa, A. Stoppa, J. Hunger, R. Buchner, and F. Kremer, “Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid,” J. Chem. Phys. 128, 214509 (2008).
40.COMSOL Multiphysics, version 4.3b, COMSOL, Inc., 2013.
41.C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 1818018187 (2012).

Data & Media loading...


Article metrics loading...



We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly /2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd