Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/2/10.1063/1.4866146
1.
1. S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech. 30, 329 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
2.
2. Y. H. Qian, S. Succi, and S. A. Orszag, “Recent advances in lattice Boltzmann computing,” Annu. Rev. Comput. Phys. 30, 195 (1995).
http://dx.doi.org/10.1142/9789812830647_0006
3.
3. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001).
4.
4. D. d'Humières, “Generalized lattice-Boltzmann equations” in Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, edited by B. D. Shizgal and D. P. Weaver (AIAA Press, Washington, DC, 1992), Vol. 159, p. 450.
http://dx.doi.org/10.2514/5.9781600866319.0450.0458
5.
5. D. d'Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions,” Philos. Trans. R. Soc. London, A 360, 437 (2002).
http://dx.doi.org/10.1098/rsta.2001.0955
6.
6. P. Lallemand and L.-S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev. E 61, 6546 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.6546
7.
7. P. Lallemand and L.-S. Luo, “Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions,” Phys. Rev. E 68, 036706 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.036706
8.
8. M. C. Geier, A. Greiner, and J. G. Korvink, “Cascaded digital lattice Boltzmann automata for high Reynolds number flow,” Phys. Rev. E 73, 066705 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.066705
9.
9. D. Lycett-Brown and K. H. Luo, “Multiphase cascaded lattice Boltzmann method,” Comput. Math. Appl. 67, 350 (2014).
http://dx.doi.org/10.1016/j.camwa.2013.08.033
10.
10. X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E 47, 1815 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.1815
11.
11. X. Shan and H. Chen, “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation,” Phys. Rev. E 49, 2941 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.2941
12.
12. A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov, “On equations of state in a lattice Boltzmann method,” Comput. Math. Appl. 58, 965 (2009).
http://dx.doi.org/10.1016/j.camwa.2009.02.024
13.
13. B. F. Lin, J. H. Huang, and D. Y. Huang, “Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions,” Fuel 88, 1779 (2009).
http://dx.doi.org/10.1016/j.fuel.2009.04.006
14.
14. C. Öner and S. Altun, “Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine,” Appl. Energy 86, 2114 (2009).
http://dx.doi.org/10.1016/j.apenergy.2009.01.005
15.
15. H. Aydin and H. Bayindir, “Performance and emission analysis of cottonseed oil methyl ester in a diesel engine,” Renewable Energy 35, 588 (2010).
http://dx.doi.org/10.1016/j.renene.2009.08.009
16.
16. Z. Utlua and M. S. Koçak, “The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions,” Renewable Energy 33, 1936 (2008).
http://dx.doi.org/10.1016/j.renene.2007.10.006
17.
17. J. Qian and C. K. Law, “Regimes of coalescence and separation in droplet collision,” J. Fluid Mech. 331, 59 (1997).
http://dx.doi.org/10.1017/S0022112096003722
18.
18. N. Ashgriz and J. Y. Poo, “Coalescence and separation in binary collisions of liquid drops,” J. Fluid Mech. 221, 183 (1990).
http://dx.doi.org/10.1017/S0022112090003536
19.
19. C. Rabe, J. Malet, and F. Feuillebois, “Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number,” Phys. Fluids 22, 047101 (2010).
http://dx.doi.org/10.1063/1.3392768
20.
20. C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
http://dx.doi.org/10.1063/1.3679165
21.
21. K.-L. Pan, P.-C. Chou, and Y.-J. Tseng, “Binary droplet collision at high Weber number,” Phys. Rev. E 80, 036301 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.036301
22.
22. Y. Pan and K. Suga, “Numerical simulation of binary liquid droplet collision,” Phys. Fluids 17, 082105 (2005).
http://dx.doi.org/10.1063/1.2009527
23.
23. S. Tanguy and A. Berlemont, “Application of a level set method for simulation of droplet collisions,” Int. J. Multiphase Flow 31, 1015 (2005).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.05.010
24.
24. N. Nikolopoulos and G. Bergeles, “The effect of gas and liquid properties and droplet size ratio on the central collision between two unequal-size droplets in the reflexive regime,” Int. J. Heat Mass Transfer 54, 678 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.002
25.
25. T. Inamuro, S. Tajima, and F. Ogino, “Lattice Boltzmann simulation of droplet collision dynamics,” Int. J. Heat Mass Transfer 47, 4649 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.08.030
26.
26. K. H. Luo, J. Xia, and E. Monaco, “Multiscale modeling of multiphase flow with complex interactions,” J. Multiscale Modell. 01, 125 (2009).
http://dx.doi.org/10.1142/S1756973709000074
27.
27. C. Focke and D. Bothe, “Direct numerical simulation of binary off-centre collisions of shear thinning droplets at high Weber numbers,” Phys. Fluids 24, 073105 (2012).
http://dx.doi.org/10.1063/1.4737582
28.
28. I. V. Karlin and P. Asinari, “Factorization symmetry in the lattice Boltzmann method,” Physica A 389, 1530 (2010).
http://dx.doi.org/10.1016/j.physa.2009.12.032
29.
29. M. C. Geier, A. Greiner, and J. G. Korvink, “Properties of the cascaded lattice Boltzmann automaton,” Int. J. Mod. Phys. C 18, 455 (2007).
http://dx.doi.org/10.1142/S0129183107010681
30.
30. E. Orlandini, M. R. Swift, and J. M. Yeomans, “A lattice Boltzmann model of binary-fluid mixtures,” Europhys. Lett. 32, 463 (1995).
http://dx.doi.org/10.1209/0295-5075/32/6/001
31.
31. M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, “Lattice Boltzmann simulations of liquid-gas and binary fluid systems,” Phys. Rev. E 54, 5041 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.5041
32.
32. M. R. Swift, W. R. Osborn, and J. M. Yeomans, “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett. 75, 830 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.830
33.
33. X. He and G. D. Doolen, “Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows,” J. Stat. Phys. 107, 309 (2002).
http://dx.doi.org/10.1023/A:1014527108336
34.
34. X. He, X. Shan, and G. D. Doolen, “Discrete Boltzmann equation model for nonideal gases,” Phys. Rev. E 57, R13 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.R13
35.
35. L.-S. Luo, “Unified theory of lattice Boltzmann models for nonideal gases,” Phys. Rev. Lett. 81, 1618 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1618
36.
36. X. Shan and G. Doolen, “Multicomponent lattice Boltzmann model with interparticle interaction,” J. Stat. Phys. 81, 379 (1995).
http://dx.doi.org/10.1007/BF02179985
37.
37. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, “Generalized lattice Boltzmann method with multirange pseudopotential,” Phys. Rev. E 75, 026702 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.026702
38.
38. P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids 18, 042101 (2006).
http://dx.doi.org/10.1063/1.2187070
39.
39. Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Phys. Rev. E 65, 046308 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.046308
40.
40. Q. Li, K. H. Luo, and X. J. Li, “Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows,” Phys. Rev. E 86, 016709 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.016709
41.
41. A. J. Wagner, “Thermodynamic consistency of liquid-gas lattice Boltzmann simulations,” Phys. Rev. E 74, 056703 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.056703
42.
42. K. N. Premnath and S. Banerjee, “Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments,” Phys. Rev. E 80, 036702 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.036702
43.
43. A. Gopinath and D. L. Koch, “Collision and rebound of small droplets in an incompressible continuum gas,” J. Fluid Mech. 454, 145 (2002).
http://dx.doi.org/10.1017/S0022112001006966
44.
44. P. Zhang and C. K. Law, “An analysis of head-on droplet collision with large deformation in gaseous medium,” Phys. Fluids 23, 042102 (2011).
http://dx.doi.org/10.1063/1.3580754
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/2/10.1063/1.4866146
Loading
/content/aip/journal/pof2/26/2/10.1063/1.4866146
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/2/10.1063/1.4866146
2014-02-25
2016-12-06

Abstract

Three-dimensional binary droplet collisions are studied using a multiphase cascaded lattice Boltzmann method (LBM). With this model it is possible to simulate collisions with a Weber number of up to 100 and a Reynolds number of up to 1000, at a liquid to gas density ratio of over 100. This is made possible by improvements to the collision operator of the LBM. The cascaded LBM in three dimensions is introduced, in which additional relaxation rates for higher order moments, defined in a co-moving reference frame, are incorporated into the collision operator. It is shown that these relaxation rates can be tuned to reduce spurious velocities around curved phase boundaries, without compromising the accuracy of the simulation results. The range of attainable Reynolds numbers is therefore increased. Different outcomes from both head-on and off-centre collisions are simulated, for both equal and unequal size droplets, including coalescence, head-on separation, and off-centre separation. For head-on collisions the critical Weber number between coalescence and separation is shown to decrease with decreasing ambient gas pressure. The variation of critical Weber number with droplet size ratio is also studied. Comparisons are made with the theoretical predictions of Tang et al. [“Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids24, 022101 (2012)], and the effect of ambient gas pressure is again considered. For off-centre collisions, boundaries between different collision outcomes are accurately defined and quantitative comparisons are made with the theoretical predictions of Rabe et al. [“Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number,” Phys. Fluids22, 047101 (2010)]. While general agreement between the simulated and theoretical boundaries is presented, deviations due to varying liquid viscosity are observed. Finally, the prediction of the independence of regime boundaries with varying droplet size ratio, when using the symmetric Weber number as defined by Rabe , is discussed. Simulation results showing qualitative agreement are presented, although some discrepancies are reported.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/2/1.4866146.html;jsessionid=SsqCIYTT7XftmA5WQAug65g7.x-aip-live-03?itemId=/content/aip/journal/pof2/26/2/10.1063/1.4866146&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/2/10.1063/1.4866146&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/2/10.1063/1.4866146'
Right1,Right2,Right3,