Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/3/10.1063/1.4866813
1.
1. P. Moin and K. Mahesh, “Direct numerical simulation: A tool in turbulence research,” Annu. Rev. Fluid Mech. 30, 539578 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.539
2.
2. J. Jiménez and R. D. Moser, “What are we learning from simulating wall turbulence?” Philos. Trans. R. Soc., A 365, 715732 (2007).
http://dx.doi.org/10.1098/rsta.2006.1943
3.
3. G. Alfonsi, “On direct numerical simulation of turbulent flows,” Appl. Mech. Rev. 64, 020802 (2011).
http://dx.doi.org/10.1115/1.4005282
4.
4. S. B. Pope, Turbulent Flows (Cambridge University Press, 2000).
5.
5. D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed. (DCW Industries, 2006).
6.
6. P. A. Durbin and B. A. Pettersson Reif, Statistical Theory and Modeling for Turbulent Flows (Wiley, 2011).
7.
7. S. H. Cheung, T. A. Oliver, E. E. Prudencio, S. Prudhomme, and R. D. Moser, “Bayesian uncertainty analysis with applications to turbulence modeling,” Reliab. Eng. Sys. Saf. 96, 11371149 (2011).
http://dx.doi.org/10.1016/j.ress.2010.09.013
8.
8. T. A. Oliver and R. D. Moser, “Bayesian uncertainty quantification applied to RANS turbulence models,” J. Phys.: Conf. Ser. 318, 042032 (2011).
http://dx.doi.org/10.1088/1742-6596/318/4/042032
9.
9.AIAA Committee on Standards, “AIAA guide for verification and validation of computational fluid dynamics simulations,” AIAA Paper 98-G-077, 1998.
10.
10.American Society of Mechanical Engineers, “Guide for Verification and Validation in Computational Solid Mechanics” (ASME V&V 10, 2006).
11.
11. P. J. Roache, Verification and Validation in Computational Science and Engineering (Hermosa Publishers, 1998).
12.
12. C. J. Roy, “Review of code and solution verification procedures for computational simulation,” J. Comput. Phys. 205, 131156 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.10.036
13.
13. W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing (Cambridge University Press, 2010).
14.
14. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, 1992).
15.
15. D. A. Donzis, P. K. Yeung, and K. R. Sreenivasan, “Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations,” Phys. Fluids 20, 045108 (2008).
http://dx.doi.org/10.1063/1.2907227
16.
16. S. Hoyas and J. Jiménez, “Reynolds number effects on the Reynolds-stress budgets in turbulent channels,” Phys. Fluids 20, 101511 (2008).
http://dx.doi.org/10.1063/1.3005862
17.
17. K. E. Trenberth, “Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations,” Mon. Weather Rev. 112, 23592368 (1984).
http://dx.doi.org/10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2
18.
18. F. W. Zwiers and H. von Storch, “Taking serial correlation into account in tests of the mean,” J. Clim. 8, 336351 (1995).
http://dx.doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2
19.
19. P. M. T. Broersen, “Automatic spectral analysis with time series models,” IEEE Trans. Instrum. Meas. 51, 211216 (2002).
http://dx.doi.org/10.1109/19.997814
20.
20. P. M. T. Broersen, Automatic Autocorrelation and Spectral Analysis (Springer–Verlag, 2006).
http://dx.doi.org/10.1007/1-84628-329-9
21.
21. C. Chatfield, The Analysis of Time Series: An Introduction (Chapman & Hall/CRC, 2004).
22.
22. D. B. Percival, “Three curious properties of the sample variance and autocovariance for stationary processes with unknown mean,” Am. Stat. 47, 274276 (1993).
http://dx.doi.org/10.1080/00031305.1993.10475997
23.
23. H. von Storch and F. W. Zwiers, Statistical Analysis in Climate Research (Cambridge University Press, 2001).
24.
24. G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, 4th ed. (John Wiley, 2008).
25.
25. M. B. Priestley, Spectral Analysis and Time Series: Univariate Series (J. W. Arrowsmith, 1981), Vol. 1.
26.
26. P. M. T. Broersen, “Finite sample criteria for autoregressive order selection,” IEEE Trans. Signal Process. 48, 35503558 (2000).
http://dx.doi.org/10.1109/78.887047
27.
27. J. P. Burg, “Maximum entropy spectral analysis,” Ph.D. thesis (Stanford University, 1975).
28.
28. N. Andersen, “Comments on the performance of maximum entropy algorithms,” Proc. IEEE 66, 15811582 (1978).
http://dx.doi.org/10.1109/PROC.1978.11160
29.
29. L. J. Faber, “Commentary on the denominator recursion for Burg's block algorithm,” Proc. IEEE 74, 10461047 (1986).
http://dx.doi.org/10.1109/PROC.1986.13584
30.
30. N. Andersen, “On the calculation of filter coefficients for maximum entropy spectral analysis,” Geophys. 39, 6972 (1974).
http://dx.doi.org/10.1190/1.1440413
31.
31. P. Strobach, “Pure order recursive least-squares ladder algorithms,” IEEE Trans. Acoust., Speech, Signal Process. 34, 880897 (1986).
http://dx.doi.org/10.1109/TASSP.1986.1164881
32.
32. J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave Manual Version 3 (Network Theory Limited, 2008).
33.
33. F. L. Drake and G. Rossum, The Python Language Reference Manual (Network Theory Ltd., 2011).
34.
34. R. T. Cox, The Algebra of Probable Inference (Johns Hopkins University Press, 1961).
35.
35. R. P. Christian, The Bayesian Choice (Springer, 2001).
36.
36. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003).
37.
37. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer, 2005).
38.
38. D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing (Springer, 2007).
39.
39. C. Robert and G. Casella, Monte Carlo Statistical Methods (Springer, 2010).
40.
40. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The mcmc hammer,” Publ. Astron. Soc. Pac. 125, 306312 (2013).
http://dx.doi.org/10.1086/670067
41.
41. J. Goodman and J. Weare, “Ensemble samplers with affine invariance,” Commun. Appl. Math. Comput. Sci. 5, 6580 (2010).
http://dx.doi.org/10.2140/camcos.2010.5.65
42.
42. O. Tange, “GNU parallel - the command-line power tool,” USENIX; login: 36, 4247 (2011).
43.
43. J. Kim, P. Moin, and R. D. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133166 (1987).
http://dx.doi.org/10.1017/S0022112087000892
44.
44. J. C. del Álamo and J. Jiménez, “Spectra of the very large anisotropic scales in turbulent channels,” Phys. Fluids 15, L41L44 (2003).
http://dx.doi.org/10.1063/1.1570830
45.
45. J. C. del Álamo, J. Jiménez, P. Zandonade, and R. D. Moser, “Scaling of the energy spectra of turbulent channels,” J. Fluid Mech. 500, 135144 (2004).
http://dx.doi.org/10.1017/S002211200300733X
46.
46. M. Lee, N. Malaya, and R. D. Moser, “Petascale direct numerical simulation of turbulent channel flow on up to 786k cores,” in Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, SC'13 (ACM, New York, NY, USA, 2013), pp. 6116111.
http://dx.doi.org/10.1145/2503210.2503298
47.
47. P. R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions,” J. Comput. Phys. 96, 297324 (1991).
http://dx.doi.org/10.1016/0021-9991(91)90238-G
48.
48. W. Y. Kwok, R. D. Moser, and J. Jiménez, “A critical evaluation of the resolution properties of B-Spline and compact finite difference methods,” J. Comput. Phys. 174, 510551 (2001).
http://dx.doi.org/10.1006/jcph.2001.6919
49.
49. R. Johnson, “Higher order B-spline collocation at the Greville abscissae,” Appl. Numer. Math. 52, 6375 (2005).
http://dx.doi.org/10.1016/j.apnum.2004.04.002
50.
50. O. Botella and K. Shariff, “B-spline methods in fluid dynamics,” Int. J. Comput. Fluid Dyn. 17, 133149 (2003).
http://dx.doi.org/10.1080/1061856031000104879
51.
51. R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann. 100, 3274 (1928).
http://dx.doi.org/10.1007/BF01448839
52.
52. P. M. T. Broersen, “Practical aspects of the spectral analysis of irregularly sampled data with time-series models,” IEEE Trans. Instrum. Meas. 58, 13801388 (2009).
http://dx.doi.org/10.1109/TIM.2008.2009201
53.
53. S. Hoyas and J. Jiménez, “Scaling of the velocity fluctuations in turbulent channels up to reτ = 2003,” Phys. Fluids 18, 011702 (2006).
http://dx.doi.org/10.1063/1.2162185
54.
54. P. Billingsely, Probability and Measure, 4th ed. (Wiley, 2012).
55.
55. L. Zhengyan and L. Chuanrong, Limit Theory for Mixing Dependent Random Variables, Mathematics and Its Applications, Vol. 378 (Science Press/Kluwer Academic Publishers, 1996).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/3/10.1063/1.4866813
Loading
/content/aip/journal/pof2/26/3/10.1063/1.4866813
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/3/10.1063/1.4866813
2014-03-06
2016-12-10

Abstract

Rigorous assessment of uncertainty is crucial to the utility of direct numerical simulation (DNS) results. Uncertainties in the computed statistics arise from two sources: finite statistical sampling and the discretization of the Navier–Stokes equations. Due to the presence of non-trivial sampling error, standard techniques for estimating discretization error (such as Richardson extrapolation) fail or are unreliable. This work provides a systematic and unified approach for estimating these errors. First, a sampling error estimator that accounts for correlation in the input data is developed. Then, this sampling error estimate is used as part of a Bayesian extension of Richardson extrapolation in order to characterize the discretization error. These methods are tested using the Lorenz equations and are shown to perform well. These techniques are then used to investigate the sampling and discretization errors in the DNS of a wall-bounded turbulent flow at ≈ 180. Both small ( /δ × /δ = 4π × 2π) and large ( /δ × /δ = 12π × 4π) domain sizes are investigated. For each case, a sequence of meshes was generated by first designing a “nominal” mesh using standard heuristics for wall-bounded simulations. These nominal meshes were then coarsened to generate a sequence of grid resolutions appropriate for the Bayesian Richardson extrapolation method. In addition, the small box case is computationally inexpensive enough to allow simulation on a finer mesh, enabling the results of the extrapolation to be validated in a weak sense. For both cases, it is found that while the sampling uncertainty is large enough to make the order of accuracy difficult to determine, the estimated discretization errors are quite small. This indicates that the commonly used heuristics provide adequate resolution for this class of problems. However, it is also found that, for some quantities, the discretization error is not small relative to sampling error, indicating that the conventional wisdom that sampling error dominates discretization error for this class of simulations needs to be reevaluated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/3/1.4866813.html;jsessionid=K302W7rTCaTVJezuEWEluLPN.x-aip-live-02?itemId=/content/aip/journal/pof2/26/3/10.1063/1.4866813&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/3/10.1063/1.4866813&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/3/10.1063/1.4866813'
Right1,Right2,Right3,