1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Two dimensional Leidenfrost droplets in a Hele-Shaw cell
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/3/10.1063/1.4867163
1.
1. J. G. Leidenfrost, De Aquae Communis Nonnullis Qualitatibus Tractatus (Ovenius, Duisbourg, 1756).
2.
2. J. D. Bernardin and I. Mudawar, “The Leidenfrost point: Experimental study and assessment of existing models,” J. Heat Transfer 121, 894 (1999).
http://dx.doi.org/10.1115/1.2826080
3.
3. H. van Dam, “Physics of nuclear reactor safety,” Rep. Prog. Phys. 55, 2025 (1992).
http://dx.doi.org/10.1088/0034-4885/55/11/003
4.
4. D. Quéré, “Leidenfrost dynamics,” Annu. Rev. Fluid. Mech. 45, 197 (2013).
http://dx.doi.org/10.1146/annurev-fluid-011212-140709
5.
5. A.-L. Biance, C. Clanet, and D. Quéré, “Leidenfrost drops,” Phys. Fluids 15, 1632 (2003).
http://dx.doi.org/10.1063/1.1572161
6.
6. F. Celestini, T. Frisch, and Y. Pomeau, “Take-off of small Leidenfrost droplets,” Phys. Rev. Lett. 109, 034501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.034501
7.
7. P. Tabeling, Introduction to Microfluidics (Oxford University Press, Oxford, 2005).
8.
8. F. Celestini, T. Frisch, and Y. Pomeau, “Room temperature water Leidenfrost droplets,” Soft Matter 9, 9535 (2013).
http://dx.doi.org/10.1039/c3sm51608c
9.
9. Y. Pomeau, M. Le Berre, F. Celestini, and T. Frisch, “The Leidenfrost effect: From quasi-spherical droplets to puddles,” C. R. Mec. 340, 867 (2012).
http://dx.doi.org/10.1016/j.crme.2012.10.034
10.
10. L. Duchemin, J. Lister, and U. Lange, “Static shapes of a viscous levitated drop,” J. Fluid Mech. 533, 161170 (2005).
http://dx.doi.org/10.1017/S0022112005004258
11.
11. H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, USA, 1932).
12.
12. L. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 7197 (1879).
http://dx.doi.org/10.1098/rspl.1879.0015
13.
13. R. Takaki and K. Adachi, “Vibration of a flattened drop. II. Normal mode analysis,” J. Phys. Soc. Jpn. 54, 24622469 (1985).
http://dx.doi.org/10.1143/JPSJ.54.2462
14.
14. D. E. Strier, A. A. Duarte, H. Ferrari, and G. B. Mindlin, “Nitrogen stars: morphogenesis of a liquid drop,” Physica A 283, 261 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00164-3
15.
15. A. Snezhko, E. Ben Jacob, and I. S. Aranson, “Pulsating gliding-transition in the dynamics of levitating liquid nitrogen droplets,” New J. Phys. 10, 043034 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/043034
16.
16. P. Brunet and J. H. Snoeijer, “Star-drops formed by periodic excitation and on an air cushion: A short review,” Eur. Phys. J.: Spec. Top. 192, 207226 (2011).
http://dx.doi.org/10.1140/epjst/e2011-01375-5
17.
17. W. Bouwhuis, K. G. Winkels, I. R. Peters, P. Brunet, D. van der Meer, and J. H. Snoeijer, “Oscillating and star-shaped drops levitated by an airflow,” Phys. Rev. E 88, 023017 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.023017
18.
18. X. Noblin, A. Buguin, and F. Brochard-Wyart, “Triplon modes of puddles,” Phys. Rev. Lett. 94, 166102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.166102
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/3/10.1063/1.4867163
Loading
/content/aip/journal/pof2/26/3/10.1063/1.4867163
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/3/10.1063/1.4867163
2014-03-05
2014-09-19

Abstract

We experimentally and theoretically investigate the behavior of Leidenfrost droplets inserted in a Hele-Shaw cell. As a result of the confinement from the two surfaces, the droplet has the shape of a flattened disc and is thermally isolated from the surface by the two evaporating vapor layers. An analysis of the evaporation rate using simple scaling arguments is in agreement with the experimental results. Using the lubrication approximation we numerically determine the shape of the droplets as a function of its radius. We furthermore find that the droplet width tends to zero at its center when the radius reaches a critical value. This prediction is corroborated experimentally by the direct observation of the sudden transition from a flattened disc into an expending torus. Below this critical size, the droplets are also displaying capillary azimuthal oscillating modes reminiscent of a hydrodynamic instability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/3/1.4867163.html;jsessionid=3h71ov161spka.x-aip-live-02?itemId=/content/aip/journal/pof2/26/3/10.1063/1.4867163&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two dimensional Leidenfrost droplets in a Hele-Shaw cell
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/3/10.1063/1.4867163
10.1063/1.4867163
SEARCH_EXPAND_ITEM