1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Remnants from fast liquid withdrawal
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/3/10.1063/1.4867496
1.
1. F. Savart, “Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi,” Ann. Chim. 53, 337386 (1833).
2.
2. J. A. F. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (Gauthier-Villars, Paris, 1873).
3.
3. L. Rayleigh, “On the instability of jets,” Proc. London Math. Soc. s1-10(1), 413 (1878).
http://dx.doi.org/10.1112/plms/s1-10.1.4
4.
4. J. Eggers, “Universal pinching of 3d axisymmetric free-surface flow,” Phys. Rev. Lett. 71(21), 34583460 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3458
5.
5. E. Villermaux, P. Marmottant, and J. Duplat, “Ligament-mediated spray formation,” Phys. Rev. Lett. 92(7), 074501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.074501
6.
6. E. Villermaux, “Fragmentation,” Annu. Rev. Fluid Mech. 39, 419446 (2007).
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110214
7.
7. A. Javadi, J. Eggers, D. Bonn, M. Habibi, and N. M. Ribe, “Delayed capillary breakup of falling viscous jets,” Phys. Rev. Lett. 110(14), 144501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.144501
8.
8. E. Villermaux, V. Pistre, and H. Lhuissier, “The viscous savart sheet,” J. Fluid Mech. 730, 607625 (2013).
http://dx.doi.org/10.1017/jfm.2013.354
9.
9. E. Villermaux, “The formation of filamentary structures from molten silicates: Pele's hair, angel hair, and blown clinker,” C. R. Mec. 340(8), 555564 (2012).
http://dx.doi.org/10.1016/j.crme.2012.06.003
10.
10. O. A. Basaran, H. Gao, and P. P. Bhat, “Nonstandard inkjets,” Annu. Rev. Fluid Mech. 45, 85113 (2013).
http://dx.doi.org/10.1146/annurev-fluid-120710-101148
11.
11. G. Birkhoff, D. P. Macdougall, E. M. Pugh, and G. I. Taylor, “Explosives with lined cavities,” J. Appl. Phys. 19, 563582 (1948).
http://dx.doi.org/10.1063/1.1698173
12.
12. S. Tomotika, “Breaking up of a drop of viscous liquid immersed in another viscous fluid with is extending at a uniform rate,” Proc. R. Soc. London A 153(879), 302318 (1936).
http://dx.doi.org/10.1098/rspa.1936.0003
13.
13. I. Frankel and D. Weihs, “Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges),” J. Fluid Mech. 155, 289307 (1985).
http://dx.doi.org/10.1017/S0022112085001811
14.
14. D. Henderson, H. Segur, L. B. Smolka, and M. Wadati, “The motion of a falling liquid filament,” Phys. Fluids 12(3), 550 (2000).
http://dx.doi.org/10.1063/1.870261
15.
15. J. Eggers and E. Villermaux, “Physics of fluid jets,” Rep. Prog. Phys. 71, 036601 (2008).
http://dx.doi.org/10.1088/0034-4885/71/3/036601
16.
16. J. Meseguer, “The breaking of an axisymmetric slender liquid bridge,” J. Fluid Mech. 130, 123151 (1983).
http://dx.doi.org/10.1017/S0022112083001019
17.
17. N. A. Bezdenejnykh, J. Meseguer, and J. M. Perales, “Experimental analysis of stability of capillary liquid bridges,” Phys. Fluids A 4(4), 677680 (1992).
http://dx.doi.org/10.1063/1.858286
18.
18. L. A. Slobozhanin and J. M. Perales, “Stability of liquid bridges between two equal disks in an axial gravity field,” Phys. Fluids 5(6), 13051314 (1993).
http://dx.doi.org/10.1063/1.858567
19.
19. J. Meseguer, L. A. Slobozhanin, and J. M. Perales, “A review on the stability of liquid bridges,” Adv. Space Res. 16(7), 514 (1995).
http://dx.doi.org/10.1016/0273-1177(95)00126-Y
20.
20. S. Gaudet, G. H. McKinley, and H. A. Stone, “Extensional deformation of Newtonian liquid bridges,” Phys. Fluids 8(10), 2568 (1996).
http://dx.doi.org/10.1063/1.869044
21.
21. X. Zhang, R. S. Padgett, and O. A. Basaran, “Nonlinear deformation and breakup of stretching liquid bridges,” J. Fluid Mech. 329, 207245 (1996).
http://dx.doi.org/10.1017/S0022112096008907
22.
22. P. M. Reis, S. Jung, J. M. Aristroff, and R. Stocker, “How cats lap: Water uptake by felis catus,” Science 330, 12311234 (2010).
http://dx.doi.org/10.1126/science.1195421
23.
23. D. F. James and M. Pouran, “Droplet formation in quickly stretched liquid filament,” Rheol. Acta 48(6), 611624 (2009).
http://dx.doi.org/10.1007/s00397-009-0356-x
24.
24. S. Dodds, M. Carvalho, and S. Kumar, “Stretching liquid bridges with moving contact lines: The role of inertia,” Phys. Fluids 23, 092101 (2011).
http://dx.doi.org/10.1063/1.3623427
25.
25. W. Kim and J. W. M. Bush, “Natural drinking strategies,” J. Fluid Mech. 705, 725 (2012).
http://dx.doi.org/10.1017/jfm.2012.122
26.
26. W. D. Harkins and F. E. Brown, “The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method,” J. Am. Chem. Soc. 41, 499524 (1919).
http://dx.doi.org/10.1021/ja01461a003
27.
27. H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in drop formation as revealed by the high-speed motion camera,” J. Phys. Chem. 41, 10171028 (1937).
http://dx.doi.org/10.1021/j150385a012
28.
28. O. E. Yildirim, Q. Xu, and O. A. Basaran, “Analysis of the drop weight method,” Phys. Fluids 17, 062107 (2005).
http://dx.doi.org/10.1063/1.1938227
29.
29. V. G. Levich , Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1962).
30.
30. C. Weber, “Zum zerfall eines flüssigkeitsstrahles,” Z. Angew. Math. Mech. 11, 136154 (1931).
http://dx.doi.org/10.1002/zamm.19310110207
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/3/10.1063/1.4867496
Loading
/content/aip/journal/pof2/26/3/10.1063/1.4867496
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/3/10.1063/1.4867496
2014-03-06
2014-07-28

Abstract

We study the breakup of an axisymmetric low viscosity liquid volume (ethanol and water), held by surface tension on supporting rods, when subject to a vigorous axial stretching. One of the rods is promptly set into a fast axial motion, either with constant acceleration, or constant velocity, and we aim at describing the remnant mass adhering to it. A thin ligament is withdrawn from the initial liquid volume, which eventually breaks up at time . We find that the breakup time and entrained mass are related by , where σ is the liquid surface tension. For a constant acceleration γ, and although the overall process is driven by surface tension, is found to be independent of σ, while is inversely proportional to γ. We measure and derive the corresponding scaling laws in the case of constant velocity too.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/3/1.4867496.html;jsessionid=fp39ldekhlqp.x-aip-live-02?itemId=/content/aip/journal/pof2/26/3/10.1063/1.4867496&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Remnants from fast liquid withdrawal
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/3/10.1063/1.4867496
10.1063/1.4867496
SEARCH_EXPAND_ITEM