Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Savart, “Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi,” Ann. Chim. 53, 337386 (1833).
2. J. A. F. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (Gauthier-Villars, Paris, 1873).
3. L. Rayleigh, “On the instability of jets,” Proc. London Math. Soc. s1-10(1), 413 (1878).
4. J. Eggers, “Universal pinching of 3d axisymmetric free-surface flow,” Phys. Rev. Lett. 71(21), 34583460 (1993).
5. E. Villermaux, P. Marmottant, and J. Duplat, “Ligament-mediated spray formation,” Phys. Rev. Lett. 92(7), 074501 (2004).
6. E. Villermaux, “Fragmentation,” Annu. Rev. Fluid Mech. 39, 419446 (2007).
7. A. Javadi, J. Eggers, D. Bonn, M. Habibi, and N. M. Ribe, “Delayed capillary breakup of falling viscous jets,” Phys. Rev. Lett. 110(14), 144501 (2013).
8. E. Villermaux, V. Pistre, and H. Lhuissier, “The viscous savart sheet,” J. Fluid Mech. 730, 607625 (2013).
9. E. Villermaux, “The formation of filamentary structures from molten silicates: Pele's hair, angel hair, and blown clinker,” C. R. Mec. 340(8), 555564 (2012).
10. O. A. Basaran, H. Gao, and P. P. Bhat, “Nonstandard inkjets,” Annu. Rev. Fluid Mech. 45, 85113 (2013).
11. G. Birkhoff, D. P. Macdougall, E. M. Pugh, and G. I. Taylor, “Explosives with lined cavities,” J. Appl. Phys. 19, 563582 (1948).
12. S. Tomotika, “Breaking up of a drop of viscous liquid immersed in another viscous fluid with is extending at a uniform rate,” Proc. R. Soc. London A 153(879), 302318 (1936).
13. I. Frankel and D. Weihs, “Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges),” J. Fluid Mech. 155, 289307 (1985).
14. D. Henderson, H. Segur, L. B. Smolka, and M. Wadati, “The motion of a falling liquid filament,” Phys. Fluids 12(3), 550 (2000).
15. J. Eggers and E. Villermaux, “Physics of fluid jets,” Rep. Prog. Phys. 71, 036601 (2008).
16. J. Meseguer, “The breaking of an axisymmetric slender liquid bridge,” J. Fluid Mech. 130, 123151 (1983).
17. N. A. Bezdenejnykh, J. Meseguer, and J. M. Perales, “Experimental analysis of stability of capillary liquid bridges,” Phys. Fluids A 4(4), 677680 (1992).
18. L. A. Slobozhanin and J. M. Perales, “Stability of liquid bridges between two equal disks in an axial gravity field,” Phys. Fluids 5(6), 13051314 (1993).
19. J. Meseguer, L. A. Slobozhanin, and J. M. Perales, “A review on the stability of liquid bridges,” Adv. Space Res. 16(7), 514 (1995).
20. S. Gaudet, G. H. McKinley, and H. A. Stone, “Extensional deformation of Newtonian liquid bridges,” Phys. Fluids 8(10), 2568 (1996).
21. X. Zhang, R. S. Padgett, and O. A. Basaran, “Nonlinear deformation and breakup of stretching liquid bridges,” J. Fluid Mech. 329, 207245 (1996).
22. P. M. Reis, S. Jung, J. M. Aristroff, and R. Stocker, “How cats lap: Water uptake by felis catus,” Science 330, 12311234 (2010).
23. D. F. James and M. Pouran, “Droplet formation in quickly stretched liquid filament,” Rheol. Acta 48(6), 611624 (2009).
24. S. Dodds, M. Carvalho, and S. Kumar, “Stretching liquid bridges with moving contact lines: The role of inertia,” Phys. Fluids 23, 092101 (2011).
25. W. Kim and J. W. M. Bush, “Natural drinking strategies,” J. Fluid Mech. 705, 725 (2012).
26. W. D. Harkins and F. E. Brown, “The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method,” J. Am. Chem. Soc. 41, 499524 (1919).
27. H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in drop formation as revealed by the high-speed motion camera,” J. Phys. Chem. 41, 10171028 (1937).
28. O. E. Yildirim, Q. Xu, and O. A. Basaran, “Analysis of the drop weight method,” Phys. Fluids 17, 062107 (2005).
29. V. G. Levich , Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1962).
30. C. Weber, “Zum zerfall eines flüssigkeitsstrahles,” Z. Angew. Math. Mech. 11, 136154 (1931).

Data & Media loading...


Article metrics loading...



We study the breakup of an axisymmetric low viscosity liquid volume (ethanol and water), held by surface tension on supporting rods, when subject to a vigorous axial stretching. One of the rods is promptly set into a fast axial motion, either with constant acceleration, or constant velocity, and we aim at describing the remnant mass adhering to it. A thin ligament is withdrawn from the initial liquid volume, which eventually breaks up at time . We find that the breakup time and entrained mass are related by , where σ is the liquid surface tension. For a constant acceleration γ, and although the overall process is driven by surface tension, is found to be independent of σ, while is inversely proportional to γ. We measure and derive the corresponding scaling laws in the case of constant velocity too.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd