Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Masuda, K. Gotoh, H. Fukada, and Y. Banba, “The removal of particles from flat surfaces using a high-speed air jet,” Adv. Powder Technol. 5, 205217 (1994).
2. G. T. Smedley, D. J. Phares, and R. C. Flagan, “Entrainment of fine particles from surfaces by gas jets impinging at normal incidence,” Exp. Fluids 26, 324334 (1999).
3. G. Ziskind, M. Fichman, and C. Gutfinger, “Particle behavior on surfaces subjected to external excitations,” J. Aerosol Sci. 31, 703719 (2000).
4. M. W. Reeks and D. Hall, “Kinetic models for particle resuspension in turbulent flows: Theory and measurement,” J. Aerosol Sci. 32, 131 (2001).
5. R. Fletcher, N. Briggs, E. Ferguson, and G. Gillen, “Measurements of air jet removal efficiencies of spherical particles from cloth and planar surfaces,” Aerosol Sci. Technol. 42, 10521061 (2008).
6. Y.-H. Liu, D. Hirama, and S. Matsusaka, “Particle removal process during application of impinging dry ice jet,” Powder Technol. 217, 607613 (2012).
7. F. Zhang, M. Reeks, and M. Kissane, “Particle resuspension in turbulent boundary layers and the influence of non-Gaussian removal forces,” J. Aerosol Sci. 58, 103128 (2013).
8. L. Biasi, A. de los Reyes, M. W. Reeks, and G. F. de Santi, “Use of a simple model for the interpretation of experimental data on particle resuspension in turbulent flows,” Aerosol Sci. 32, 11751200 (2001).
9. K. W. Nicholson, “A review of particle resuspension,” Atmos. Env. 22, 26392651 (1988).
10. D. E. Drake and D. A. Cacchione, “Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California,” Cont. Shelf Res. 6, 415429 (1986).
11. B. Gomez, “Bedload transport,” Earth-Sci. Rev. 31, 89132 (1991).
12. B. M. Sumer, L. H. C. Chua, N.-S. Cheng, and J. Fredsøe, “Influence of turbulence on bed load sediment transport,” J. Hydraul. Eng. 129, 585596 (2003).
13. E. Y. Spahn, A. R. Horner-Devine, J. D. Nash, and D. A. Jay, “Particle resuspension in the Columbia River plume near field,” J. Geophys. Res. 114, C00B14, doi:10.1029/2008JC004986 (2009).
14. S. A. Miedema, “Constructing the Shields curve. Part A: Fundamentals of the sliding, rolling and lifting mechanisms for the entrainment of particles,” J. Dredging Eng. 12, 149 (2012).
15. S. A. Miedema, “Constructing the Shields curve. Part B: Sensitivity analysis, exposure and protrusion levels settling velocity, shear stress and friction velocity, erosion flux and laminar main flow,” J. Dredging Eng. 12, 5092 (2012).
16. L. Boegman and G. N. Ivey, “Flow separation and resuspension beneath shoaling nonlinear internal waves,” J. Geophys. Res. 114, C02018, doi:10.1029/2007JC004411 (2009).
17. D. B. Reeder, B. B. Ma, and Y. J. Yang, “Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves,” Marine Geol. 279, 1218 (2011).
18. B. R. Sutherland, K. J. Barrett, and G. N. Ivey, “Shoaling internal solitary waves,” J. Geophys. Res. 118, 114, doi:10.1002/jgrc.20291 (2013).
19. G. Ziskind, M. Fichman, and C. Gutfinger, “Resuspension of particulates from surfaces to turbulent flows – Review and analysis,” J. Aerosol Sci. 26, 613644 (1995).
20. J. M. Redondo, X. D. de Madron, P. Medina, M. A. Sanchez, and E. Schaaff, “Comparison of sediment resuspension measurements in sheared and zero-mean turbulent flows,” Cont. Shelf Res. 21, 20952103 (2001).
21. Y. Niño, F. Lopez, and M. Garcia, “Threshold for particle entrainment into suspension,” Sedimentology 50, 247263 (2003).
22. A. N. Papanicolaou, M. Elhakeem, G. Krallis, S. Prakash, and J. Edinger, “Sediment transport modeling review – Current and future developments,” J. Hydraul. Eng. 134, 114 (2008).
23. M. M. Stempniewicz, E. M. J. Komen, and A. de With, “Model of particle resuspension in turbulent flows,” Nuclear Eng. Design 238, 29432959 (2008).
24. A. Shields, “Anwendung der Aehnlichkeitsmechanick und der Turbulenzforschung auf die Geschiebebewegung,” Mitt. Preuss. Vers. Wasser. Schiff. (1936).
25.A. J. Sutherland, “Proposed mechanism for sediment entrainment by turbulent flows,” J. Geophys. Res. 72, 61836194, doi:10.1029/JZ072i024p06183 (1967).
26. I. Eames and S. B. Dalziel, “Dust resuspension by the flow around an impacting sphere,” J. Fluid Mech. 403, 305328 (2000).
27. R. J. Munro, N. Bethke, and S. B. Dalziel, “Sediment resuspension and erosion by vortex rings,” Phys. Fluids 21, 046601 (2009).
28. N. Bethke and S. B. Dalziel, “Resuspension onset and crater erosion by a vortex ring interacting with a particle layer,” Phys. Fluids 24, 063301 (2012).
29. R. J. Munro and S. B. Dalziel, “Attenuation technique for measuring sediment displacement levels,” Exp. Fluids 39, 600611 (2005).
30. F. de Rooij, S. B. Dalziel, and P. F. Linden, “Electrical measurement of sediment layer thickness under suspension flows,” Exp. Fluids 26, 470474 (1999).
31. M. Konz, P. Ackerer, P. Huggenberger, and C. Veit, “Comparison of light transmission and reflection techniques to determine concentrations in flow tank experiments,” Exp. Fluids 47, 8593 (2009).
32. B. R. Morton, “Forced plumes,” J. Fluid Mech. 5, 151163 (1959).
33. N. B. Kaye, “Turbulent plumes in stratified environments: A review of recent work,” Atmos.-Oceans 46, 433441 (2008).
34. C. M. Choux and T. H. Druitt, “Analogue study of particle segregation in pyroclastic density currents, with implications for the emplacement mechanisms of large ignimbrites,” Sedimentology 49, 907928 (2002).
35. B. R. Morton, G. I. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. London, Ser. A 234, 123 (1956).
36. L. van Rijn, “Sediment transport. Part I: Bed load transport,” J. Hydraul. Eng. 110, 14311456 (1984).
37. R. J. Munro and S. Dalziel, personal communication (2013).

Data & Media loading...


Article metrics loading...



Laboratory experiments are performed to examine the formation of a crater in sediment by an impinging vertical turbulent jet. Light attenuation and a “depositometer,” which records conductivity through the bed from an array of electrodes, are used to measure the crater depth as a function of space and time. The onset of crater formation and deepening is best characterized in terms of the Rouse number, Rs (proportional to the particle settling speed divided by the centerline jet speed), rather than Shields number, Sh (proportional to the stress divided by the particle weight per unit area). The critical Rouse number, Rs, is found to increase with the particle Reynolds number, Re, as a power law with exponent 0.45 ± 0.03 for Re ranging between 0.6 and 160. For smaller Rs, the crater is observed to deepen at a near-constant speed, while the crater radius remains constant. Bedload transport, measured in terms of the crater deepening speed, is determined to increase as Re times the difference between Rs and Rs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd