Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Costa, A. Folch, and G. Macedonio, “A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation,” J. Geophys. Res. 115, B09201, doi:10.1029/2009JB007175 (2010).
2. P. G. Baines and R. S. J. Sparks, “Dynamics of giant volcanic ash clouds from supervolcanic eruptions,” Geophys. Res. Lett. 32, L24808, doi:10.1029/2005GL024597 (2005).
3. R. Sparks, S. Carey, J. Gilbert, L. Glaze, H. Sigurdsson, and A. Woods, Volcanic Plumes (John Wiley, Chichester, 1997).
4. D. B. Williams and H. E. Thomas, “An assessment of volcanic hazards to aviation,” Geomatics. Natural, Hazards Risk 2, 233246 (2011).
5. A. Costa, G. Macedonio, and A. Folch, “A three-dimensional Eulerian model for transport and deposition of volcanic ashes,” Earth Planet. Sci. Lett. 241, 634647 (2006).
6. L. Wilson, R. S. J. Sparks, T. C. Huang, and N. D. Watkins, “The control of volcanic column heights by eruption energetics and dynamics,” J. Geophys. Res. 83, 18291836, doi:10.1029/JB083iB04p01829 (1978).
7. R. E. Holasek, A. W. Woods, and S. Self, “Experiments on gas-ash separation processes in volcanic umbrella plumes,” J. Volcanol. Geotherm. Res. 70, 169181 (1996).
8. R. S. J. Sparks, J. G. Moore, and C. J. Rice, “The initial giant umbrella cloud of the May 18, 1980 eruption of Mount St-Helens,” J. Volcanol. Geothermal Res. 28, 257274 (1986).
9. C. Textor, H. F. Graf, M. Herzog, J. M. Oberhuber, W. I. Rose, and G. Ernst, “Volcanic particle aggregation in explosive eruption column. Part I: Parameterization of the microphysics of hydrometeors and ash,” J. Volcanol. Geothermal Res. 150, 359377 (2006).
10. A. W. Woods, “Turbulent plumes in nature,” Annu. Rev. Fluid Mech. 42, 391412 (2010).
11. B. R. Morton, G. I. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. London, Ser. A 234, 123 (1956).
12. T. J. McDougall, “Negatively buoyant vertical jets,” Tellus 33, 313320 (1981).
13. L. J. Bloomfield and R. C. Kerr, “A theoretical model of a turbulent fountain,” J. Fluid Mech. 424, 197216 (2000).
14. B. R. Morton, “Coaxial turbulent jets,” Int. J. Heat Mass Transf. 5, 955965 (1962).
15. J. S. Turner, “Jets and plumes with negative or reversing buoyancy,” J. Fluid Mech. 26, 779792 (1966).
16. G. G. Rooney and B. J. Devenish, “Plume rise and spread in a linearly stratified environment,” Geophys. Astrophys. Fluid Dyn. (published online).
17. L. J. Bloomfield and R. C. Kerr, “Turbulent fountains in a stratified fluid,” J. Fluid Mech. 358, 335356 (1998).
18. J. K. Ansong and B. R. Sutherland, “Internal gravity waves generated by convective plumes,” J. Fluid Mech. 648, 405434 (2010).
19. T. Maxworthy, “Experimental and theoretical studies of horizontal jets in a stratified fluid,” in Proceedings of the International Symposium on Stratified Flows (International Association for Hydraulic Research, Novosibirsk, Russia, 1972), pp. 611618.
20. H. E. Huppert and J. E. Simpson, “The slumping of gravity currents,” J. Fluid Mech. 99, 785799 (1980).
21. N. Didden and T. Maxworthy, “The viscous spreading of plane and axisymmetric gravity currents,” J. Fluid Mech. 121, 2742 (1982).
22. G. N. Ivey and S. Blake, “Axisymmetric withdrawal and inflow in a density-stratified container,” J. Fluid Mech. 161, 115137 (1985).
23. N. Kotsovinos, “Axisymmetric submerged intrusion in stratified fluid,” J. Hydraulic Eng. ASCE 126, 446456 (2000).
24. A. W. Woods, “A note on non-Boussinesq plumes in an incompressible stratified environment,” J. Fluid Mech. 345, 347356 (1997).
25. H. C. Burridge and G. R. Hunt, “The rise heights of low- and high-Froude-number turbulent axisymmetric fountains,” J. Fluid Mech. 691, 392416 (2012).
26. E. J. List, “Turbulent jets and plumes,” in Mixing in Inland and Coastal Waters, edited by H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks (Academic Press Inc., San Diego, 1979), pp. 315389.
27. B. R. Morton, “Forced plumes,” J. Fluid Mech. 5, 151163 (1959).
28. L.-N. Fan, “Turbulent buoyant jets into stratified or flowing ambients,” Ph.D. thesis (California Institute of Technology, 1967).
29. D. G. Fox, “Forced plume in stratified fluid,” J. Geophys. Res. 75, 68186835, doi:10.1029/JC075i033p06818 (1970).
30. C. P. Caulfield and A. W. Woods, “Plumes with non-monotonic mixing behaviour,” Geophys. Astrophys. Fluid Dyn. 79, 173199 (1995).
31. M. Ungarish, “On gravity currents in a linearly stratified ambient: A generalization of Benjamin's steady-state propagation results,” J. Fluid Mech. 548, 4968 (2006).
32. B. R. Sutherland, A. N. F. Chow, and T. P. Pittman, “The collapse of a mixed patch in stratified fluid,” Phys. Fluids 19, 11660211166026 (2007).
33. D. Bolster, A. Hang, and P. F. Linden, “The front speed of intrusions into a continuously stratified medium,” J. Fluid Mech. 594, 369377 (2008).
34. R. E. Holasek, S. Self, and A. W. Woods, “Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes,” J. Geophys. Res. 101, 2763527655, doi:10.1029/96JB01179 (1996).
35. J. Chen, “Studies on gravitationally spreading currents,” Ph.D. thesis (California Institute of Technology, 1980).
36. C. Lemckert and J. Imberger, “Axisymmetric intrusive gravity currents in linearly stratified fluids,” J. Hydraulic Eng. ASCE 119, 662679 (1993).
37. P. F. Linden, private communication (2013).
38. G. Oster, “Density gradients,” Sci. Am. 213, 70 (1965).
39. J. Lee and V. Chu, Turbulent Buoyant Jets and Plumes: A Langrangian Approach (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003).
40. T. Koyaguchi and M. Tokuno, “Origin of the giant eruption cloud of Pinatubo, June 15, 1991,” J. Volcanol. Geotherm. Res. 55, 8596 (1993).
41. T. Koyaguchi, “Grain-size variation of tephra derived from volcanic umbrella clouds,” Bull. Volcanol. 56, 19 (1994).
42. R. Camilli, C. M. Reddy, D. R. Yoerger, B. A. S. V. Mooy, M. V. Jakuba, J. C. Kinsey, C. P. McIntyre, S. P. Sylva, and J. V. Maloney, “Tracking hydrocarbon plume transport and biodegradation at deepwater horizon,” Science 330, 201204 (2010).
43. A. Adcroft, R. Hallberg, J. P. Dunne, B. L. Samuels, J. A. Galt, C. H. Barker, and D. Payton, “Simulations of underwater plumes of dissolved oil in the Gulf of Mexico,” Geophys. Res. Lett. 37, L18605, doi:10.1029/2010GL044689 (2010).
44. P. D. Yapa and L. Zheng, “Modelling oil and gas releases from deep water: A review,” Spill Sci. Tech. Bull. 4, 189198 (1997).

Data & Media loading...


Article metrics loading...



Laboratory experiments investigate the radial spread of an intrusion created by a turbulent forced plume in uniformly stratified ambient fluid. The flow evolution is determined as it depends upon the ambient buoyancy frequency, , and the source momentum and buoyancy fluxes, and , respectively. The plume reaches its maximum vertical extent, , collapses back upon itself as a fountain and then spreads radially outwards at its neutral buoyancy depth, , where the intrusion has the same density as the ambient. Through theory and experiments we determine that = (σ) , in which = 3/4 −1/2, σ = ( / )2, and (σ) ∝ σ−3/8 for σ ≲ 50 and (σ) ∝ σ−1/4 for σ ≳ 50. In the inertia-buoyancy regime the intrusion front advances in time approximately as 3/4, consistent with models assuming a constant buoyancy flux into the intrusion. Where the intrusion first forms, at radius , its thickness is approximately constant in time. The thickness of the intrusion as a whole, (, ), adopts a self-similar shape of the form / ≃ [( )/( )] , with ≃ 0.55 ± 0.03. The comparison of these results to large volcanic plumes penetrating into and spreading in the stratosphere is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd