1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/4/10.1063/1.4871024
1.
1. G. V. Lauder and P. G. A. Madden, “Fish locomotion: Kinematics and hydrodynamics of flexible foil-like fins,” Exp. Fluids 43, 641653 (2007).
http://dx.doi.org/10.1007/s00348-007-0357-4
2.
2. G. V. Lauder, P. G. A. Madden, J. L. Tangorra, E. Anderson, and T. V. Baker, “Bioinspiration from fish for smart material design and function,” Smart Mater. Struct. 20, 094014 (2011).
http://dx.doi.org/10.1088/0964-1726/20/9/094014
3.
3. K. W. Moored, P. A. Dewey, M. C. Leftwich, H. Bart-Smith, and A. J. Smits, “Bioinspired propulsion mechanisms based on manta ray locomotion,” Marine Tech. Soc. 45, 110118 (2011).
http://dx.doi.org/10.4031/MTSJ.45.4.3
4.
4. K. W. Moored, F. E. Fish, T. H. Kemp, and H. Bart-Smith, “Batoid fishes: Inspiration for the next generation of underwater robots,” Marine Tech. Soc. J. 45, 99109 (2011).
http://dx.doi.org/10.4031/MTSJ.45.4.10
5.
5. M. S. Triantafyllou, A. H. Techet, and F. S. Hover, “Review of experimental work in biomimetic foils,” IEEE J. Oceanic Eng. 29, 585594 (2004).
http://dx.doi.org/10.1109/JOE.2004.833216
6.
6. F. E. Fish and G. V. Lauder, “Passive and active flow control by swimming fishes and mammals,” Annu. Rev. Fluid Mech. 38, 193224 (2006).
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092201
7.
7. W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C. K. Kang, C. E. S. Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics and aeroelasticity,” Prog. Aerosp. Sci. 46, 284327 (2010).
http://dx.doi.org/10.1016/j.paerosci.2010.01.001
8.
8. P. W. Webb, “The effect of solid and porous channel walls on steady swimming of stealhead trout, Oncorhynchus mykiss,” J. Exp. Biol. 178, 97108 (1993).
9.
9. E. Blevins and G. V. Lauder, “Swimming near the substrate: a simple robotic model of stingray locomotion,” Bioinspiration Biomimetics 8, 016005 (2013).
http://dx.doi.org/10.1088/1748-3182/8/1/016005
10.
10. D. B. Quinn, K. W. Moored, P. A. Dewey, and A. J. Smits, “Unsteady propulsors in ground effect,” J. Fluid Mech. 742, 152170 (2014).
http://dx.doi.org/10.1017/jfm.2013.659
11.
11. S. Stöcker, “Models for tuna school formation,” Math. Biosci. 156, 167190 (1999).
http://dx.doi.org/10.1016/S0025-5564(98)10065-2
12.
12. J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, “The karman gait: novel body kinematics of rainbow trout swimming in a vortex street,” J. Exp. Biol. 206, 10591073 (2003).
http://dx.doi.org/10.1242/jeb.00209
13.
13. J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, “Fish exploiting vortices decrease muscle activity,” Science 302, 15661569 (2003).
http://dx.doi.org/10.1126/science.1088295
14.
14. E. G. Drucker and G. V. Lauder, “Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish,” J. Exp. Biol. 204, 29432958 (2001).
15.
15. I. Akhtar, R. Mittal, G. V. Lauder, and E. G. Drucker, “Hydrodynamics of biologically inspired tandem flapping foil configuration,” Theor. Comput. Fluid Dyn. 21, 155170 (2007).
http://dx.doi.org/10.1007/s00162-007-0045-2
16.
16. C. M. Breder, “On the survival value of fish schools,” Zoologica 52, 2540 (1967).
17.
17. D. H. Cushing and F. R. H. Jones, “Why do fish school?Nature (London) 218, 918920 (1968).
http://dx.doi.org/10.1038/218918b0
18.
18. B. Partridge and T. Pitcher, “Evidence against hydrodynamic function for fish schools,” Nature 279, 418419 (1979).
http://dx.doi.org/10.1038/279418a0
19.
19. B. M. Boschitsch, P. A. Dewey, and A. J. Smits, “Propulsive performance of unsteady hydrofoils in an in-line configuration,” Phys. Fluids (in press).
20.
20. S. Alben, “Model problems for fish schooling,” in Natural Locomotion in Fluids and on Surfaces (Springer, 2012), pp. 313.
21.
21. D. Weihs, “Hydromechanics of fish schooling,” Nature (London) 241, 290291 (1973).
http://dx.doi.org/10.1038/241290a0
22.
22. D. Weihs, “Some hydrodynamical aspects of fish schooling,” in Swimming and Flying in Nature (Springer, 1975), pp. 703718.
23.
23. G. J. Dong and X. Y. Lu, “Characteristics of flow over traveling wavy foils in a side-by-side arrangement,” Phys. Fluids 19, 057107 (2007).
http://dx.doi.org/10.1063/1.2736083
24.
24. Z. Wang and D. Russell, “Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight,” Phys. Rev. Lett. 99, 148101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.148101
25.
25. W. McKinney and J. DeLaurier, “The wingmill: An oscillating-wing windmill,” J. Energy 5, 109115 (1981).
http://dx.doi.org/10.2514/3.62510
26.
26. Q. Zhu, M. Haase, and C. H. Wu, “Modeling the capacity of a novel flow-energy harvester,” Appl. Math. Modeling 33, 22072217 (2009).
http://dx.doi.org/10.1016/j.apm.2008.05.027
27.
27. C. Boragno, R. Festa, and A. Mazzino, “Elastically bounded flapping wing for energy harvesting,” Appl. Phys. Lett. 100, 253906 (2012).
http://dx.doi.org/10.1063/1.4729936
28.
28. P. A. Dewey, B. M. Boschitsch, K. W. Moored, H. A. Stone, and A. J. Smits, “Scaling laws for the thrust production of flexible pitching panels,” J. Fluid Mech. 732, 2946 (2013).
http://dx.doi.org/10.1017/jfm.2013.384
29.
29. J. H. J. Buchholz, R. P. Clark, and A. J. Smits, “Thrust performance of unsteady propulsors using a novel measurement system, and corresponding wake patterns,” Exp. Fluids 45, 461472 (2008).
http://dx.doi.org/10.1007/s00348-008-0489-1
30.
30. P. A. Dewey, A. Carriou, and A. J. Smits, “On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin,” J. Fluid Mech. 691, 245266 (2012).
http://dx.doi.org/10.1017/jfm.2011.472
31.
31. A. M. Naguib, J. Vitek, and M. M. Koochesfahani, “Finite-core vortex array model of the wake of a periodically pitching airfoil,” AIAA J. 49, 15421550 (2011).
http://dx.doi.org/10.2514/1.J050881
32.
32. M. M. Koochesfahani, “Vortical patterns in the wake of an oscillating airfoil,” AIAA J. 27, 12001205 (1989).
http://dx.doi.org/10.2514/3.10246
33.
33. T. Theodorsen, “General theory of aerodynamic instability and the mechanism of flutter,” NACA Report No. 496, 1935.
34.
34. T. Schnipper, A. Andersen, and T. Bohr, “Vortex wakes of a flapping foil,” J. Fluid Mech. 633, 411423 (2009).
http://dx.doi.org/10.1017/S0022112009007964
35.
35. R. Clements, “An inviscid model of two-dimensional vortex shedding,” J. Fluid Mech. 57, 321336 (1973).
http://dx.doi.org/10.1017/S0022112073001187
36.
36. G. K. Taylor, R. L. Nudds, and A. L. R. Thomas, “Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency,” Nature (London) 425, 707711 (2003).
http://dx.doi.org/10.1038/nature02000
37.
37. G. C. Lewin and H. Haj-Hariri, “Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow,” J. Fluid Mech. 492, 339362 (2003).
http://dx.doi.org/10.1017/S0022112003005743
38.
38. J. H. J. Buchholz and A. J. Smits, “The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel,” J. Fluid Mech. 603, 331365 (2008).
http://dx.doi.org/10.1017/S0022112008000906
39.
39. H. Dong, R. Mittal, and F. M. Najjar, “Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils,” J. Fluid Mech. 566, 309343 (2006).
http://dx.doi.org/10.1017/S002211200600190X
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871024
Loading
/content/aip/journal/pof2/26/4/10.1063/1.4871024
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/4/10.1063/1.4871024
2014-04-24
2015-07-03

Abstract

Experimental and analytical results are presented on two identical bio-inspired hydrofoils oscillating in a side-by-side configuration. The time-averaged thrust production and power input to the fluid are found to depend on both the oscillation phase differential and the transverse spacing between the foils. For in-phase oscillations, the foils exhibit an enhanced propulsive efficiency at the cost of a reduction in thrust. For out-of-phase oscillations, the foils exhibit enhanced thrust with no observable change in the propulsive efficiency. For oscillations at intermediate phase differentials, one of the foils experiences a thrust and efficiency enhancement while the other experiences a reduction in thrust and efficiency. Flow visualizations reveal how the wake interactions lead to the variations in propulsive performance. Vortices shed into the wake from the tandem foils form vortex pairs rather than vortex streets. For in-phase oscillation, the vortex pairs induce a momentum jet that angles towards the centerplane between the foils, while out-of-phase oscillations produce vortex pairs that angle away from the centerplane between the foils.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/4/1.4871024.html;jsessionid=25qnt32c6dc1f.x-aip-live-06?itemId=/content/aip/journal/pof2/26/4/10.1063/1.4871024&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871024
10.1063/1.4871024
SEARCH_EXPAND_ITEM