1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Swimming and pumping of rigid helical bodies in viscous fluids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/4/10.1063/1.4871084
1.
1. T. Koetsier and H. Blauwendraat, “The Archimedean screw-pump: A note on its invention and the development of the theory,” in Proceedings of the International Symposium on History of Machines and Mechanisms, 2004 (Springer, Netherlands, 2004), pp. 181194.
http://dx.doi.org/10.1007/1-4020-2204-2_15
2.
2. P. A. Tanguy, R. Lacroix, F. Bertrand, L. Choplin, and E. B. De La Fuente, “Finite element analysis of viscous mixing with a helical ribbon-screw impeller,” AIChE J. 38, 939944 (1992).
http://dx.doi.org/10.1002/aic.690380614
3.
3. J. De La Villeon, F. Bertrand, P. A. Tanguy, R. Labrie, J. Bousquet, and D. Lebouvier, “Numerical investigation of mixing efficiency of helical ribbons,” AIChE J. 44, 972977 (1998).
http://dx.doi.org/10.1002/aic.690440423
4.
4. G. Delaplace, J. C. Leuliet, and V. Relandeau, “Circulation and mixing times for helical ribbon impellers: Review and experiments,” Exp. Fluids 28(2), 170182 (2000).
http://dx.doi.org/10.1007/s003480050022
5.
5. M. Robinson and P. W. Cleary, “Flow and mixing performance in helical ribbon mixers,” Chem. Eng. Sci. 84, 382398 (2012).
http://dx.doi.org/10.1016/j.ces.2012.08.044
6.
6. P. J. Carreau, I. Patterson, and C. Y. Yap, “Mixing of viscoelastic fluids with helical-ribbon agitators. I. Mixing time and flow patterns,” Can. J. Chem. Eng. 54, 135142 (1976).
http://dx.doi.org/10.1002/cjce.5450540303
7.
7. F. Jiang, K. S. Drese, S. Hardt, M. Küpper, and F. Schönfeld, “Helical flows and chaotic mixing in curved micro channels,” AIChE J. 50, 22972305 (2004).
http://dx.doi.org/10.1002/aic.10188
8.
8. T. Honda, K. I. Arai, and K. Ishiyama, “Micro swimming mechanisms propelled by external magnetic fields,” IEEE Trans. Magn. 32, 50855087 (1996).
http://dx.doi.org/10.1109/20.539498
9.
9. A. Ghosh and P. Fischer, “Controlled propulsion of artificial magnetic nanostructured propellers,” Nano Lett. 9, 22432245 (2009).
http://dx.doi.org/10.1021/nl900186w
10.
10. L. Zhang, J. J. Abbott, L. Dong, K. E. Peyer, B. E. Kratochvil, H. Zhang, C. Bergeles, and B. J. Nelson, “Characterizing the swimming properties of artificial bacterial flagella,” Nano Lett. 9, 36633667 (2009).
http://dx.doi.org/10.1021/nl901869j
11.
11. S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport,” Adv. Mater. 24, 811816 (2012).
http://dx.doi.org/10.1002/adma.201103818
12.
12. S. Tottori, L. Zhang, K. E. Peyer, and B. J. Nelson, “Assembly, disassembly, and anomalous propulsion of microscopic helices,” Nano Lett. 13, 42634268 (2013).
http://dx.doi.org/10.1021/nl402031t
13.
13. K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, and B. J. Nelson, “Magnetic helical micromachines,” Chem. Eur. J. 19, 2838 (2013).
http://dx.doi.org/10.1002/chem.201203364
14.
14. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng. 12, 5585 (2010).
http://dx.doi.org/10.1146/annurev-bioeng-010510-103409
15.
15. W. Gao, D. Kagan, O. S. Pak, C. Clawson, S. Campuzano, E. Chuluun-Erdene, E. Shipton, E. E. Fullerton, L. Zhang, E. Lauga et al., “Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery,” Small 8, 460467 (2012).
http://dx.doi.org/10.1002/smll.201101909
16.
16. J. Wang and W. Gao, “Nano/microscale motors: Biomedical opportunities and challenges,” ACS Nano 6, 57455751 (2012).
http://dx.doi.org/10.1021/nn3028997
17.
17. J. Lighthill, “Flagellar hydrodynamics - von Neumann lecture, 1975,” SIAM Rev. 18(2), 161230 (1976).
http://dx.doi.org/10.1137/1018040
18.
18. E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,” Rep. Prog. Phys. 72, 096601 (2009).
http://dx.doi.org/10.1088/0034-4885/72/9/096601
19.
19. Z. Carvalho-Santos, J. Azimzadeh, J. B. Pereira-Leal, and M. Bettencourt-Dias, “Tracing the origins of centrioles, cilia, and flagella,” J. Cell Biol. 194, 165175 (2011).
http://dx.doi.org/10.1083/jcb.201011152
20.
20. E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 311 (1977).
http://dx.doi.org/10.1119/1.10903
21.
21. J. Gray and G. J. Hancock, “The propulsion of sea-urchin spermatozoa,” J. Exp. Biol. 32(4), 802814 (1955).
22.
22. S. Childress, Mechanics of Swimming and Flying (Cambridge University Press, Cambridge, UK, 1981), Vol. 2.
23.
23. B. Rodenborn, C.-H. Chen, H. L. Swinney, B. Liu, and H. P. Zhang, “Propulsion of microorganisms by a helical flagellum,” Proc. Natl. Acad. Sci. U.S.A. 110, E338E347 (2013).
http://dx.doi.org/10.1073/pnas.1219831110
24.
24. M. Kim, J. C. Bird, A. J. Van Parys, K. S. Breuer, and T. R. Powers, “A macroscopic scale model of bacterial flagellar bundling,” Proc. Natl. Acad. Sci. U.S.A. 100, 1548115485 (2003).
http://dx.doi.org/10.1073/pnas.2633596100
25.
25. M. Kim and T. R. Powers, “Hydrodynamic interactions between rotating helices,” Phys. Rev. E 69, 061910 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.061910
26.
26. M. Kim, M. Kim, J. C. Bird, J. Park, T. R. Powers, and K. S. Breuer, “Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling,” Exp. Fluids 37, 782788 (2004).
http://dx.doi.org/10.1007/s00348-004-0848-5
27.
27. M. Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions,” Eur. Phys. J. E 17, 493500 (2005).
http://dx.doi.org/10.1140/epje/i2004-10152-7
28.
28. H. Flores, E. Lobaton, S. Méndez-Diez, S. Tlupova, and R. Cortez, “A study of bacterial flagellar bundling,” Bull. Math. Biol. 67, 137168 (2005).
http://dx.doi.org/10.1016/j.bulm.2004.06.006
29.
29. P. J. A. Janssen and M. D. Graham, “Coexistence of tight and loose bundled states in a model of bacterial flagellar dynamics,” Phys. Rev. E 84, 011910 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011910
30.
30. S. Lim and C. S. Peskin, “Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method,” Phys. Rev. E 85, 036307 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.036307
31.
31. S. Y. Reigh, R. G. Winkler, and G. Gompper, “Synchronization and bundling of anchored bacterial flagella,” Soft Matter 8, 43634372 (2012).
http://dx.doi.org/10.1039/c2sm07378a
32.
32. S. Y. Reigh, R. G. Winkler, and G. Gompper, “Synchronization, slippage, and unbundling of driven helical flagella,” PloS ONE 8, e70868 (2013).
http://dx.doi.org/10.1371/journal.pone.0070868
33.
33. H. C. Fu, T. R. Powers, and H. C. Wolgemuth, “Theory of swimming filaments in viscoelastic media,” Phys. Rev. Lett. 99, 258101258105 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.258101
34.
34. A. M. Leshansky, “Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments,” Phys. Rev. E 80, 051911 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.051911
35.
35. H. C. Fu, C. W. Wolgemuth, and T. R. Powers, “Swimming speeds of filaments in nonlinearly viscoelastic fluids,” Phys. Fluids 21, 033102 (2009).
http://dx.doi.org/10.1063/1.3086320
36.
36. B. Liu, T. R. Powers, and K. S. Breuer, “Force-free swimming of a model helical flagellum in viscoelastic fluids,” Proc. Natl. Acad. Sci. U.S.A. 108, 1951619520 (2011).
http://dx.doi.org/10.1073/pnas.1113082108
37.
37. S. E. Spagnolie, B. Liu, and T. Powers, “Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes,” Phys. Rev. Lett. 111, 068101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.068101
38.
38. J. J. L. Higdon, “The hydrodynamics of flagellar propulsion: Helical waves,” J. Fluid Mech. 94, 331351 (1979).
http://dx.doi.org/10.1017/S0022112079001051
39.
39. E. M. Purcell, “The efficiency of propulsion by a rotating flagellum,” Proc. Natl. Acad. Sci. U.S.A. 94, 1130711311 (1997).
http://dx.doi.org/10.1073/pnas.94.21.11307
40.
40. N. Watari and R. G. Larson, “The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella,” Biophys. J. 98, 1217 (2010).
http://dx.doi.org/10.1016/j.bpj.2009.09.044
41.
41. S. E. Spagnolie and E. Lauga, “Comparative hydrodynamics of bacterial polymorphism,” Phys. Rev. Lett. 106, 058103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.058103
42.
42. B. Liu, K. S. Breuer, and T. R. Powers, “Propulsion by a helical flagellum in a capillary tube,” Phys. Fluids 26, 011701 (2014).
http://dx.doi.org/10.1063/1.4861026
43.
43. S. Childress, “A thermodynamic efficiency for Stokesian swimming,” J. Fluid Mech. 705, 7797 (2012).
http://dx.doi.org/10.1017/jfm.2011.561
44.
44. E. E. Keaveny and M. J. Shelley, “Hydrodynamic mobility of chiral colloidal aggregates,” Phys. Rev. E 79, 051405 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.051405
45.
45. E. E. Keaveny, S. Walker, and M. J. Shelley, “Optimization of chiral structures for microscale propulsion,” Nano Lett. 13, 531537 (2013).
http://dx.doi.org/10.1021/nl3040477
46.
46. K. I. Morozov and A. M. Leshansky, “The chiral magnetic nanomotors,” Nanoscale 6, 15801588 (2014).
http://dx.doi.org/10.1039/c3nr04853e
47.
47. H. Power and G. Miranda, “Second kind integral equation formulation of Stokes flows past a particle of arbitrary shape,” SIAM J. Appl. Math. 47, 689698 (1987).
http://dx.doi.org/10.1137/0147047
48.
48. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, UK, 1992).
49.
49. K. Atkinson and W. Han, Theoretical Numerical Analysis (Springer, New York, NY, 2009).
50.
50. K. E. Atkinson, An Introduction to Numerical Analysis (John Wiley & Sons, New York, 1978).
51.
51. E. E. Keaveny and M. J. Shelley, “Applying a second-kind boundary integral equation for surface tractions in Stokes flow,” J. Comput. Phys. 230, 21412159 (2011).
http://dx.doi.org/10.1016/j.jcp.2010.12.010
52.
52. A. A. Evans, S. E. Spagnolie, and E. Lauga, “Stokesian jellyfish: Viscous locomotion of bilayer vesicles,” Soft Matter 6, 17371747 (2010).
http://dx.doi.org/10.1039/b924548k
53.
53. B. Liu, K. S. Breuer, and T. R. Powers, “Helical swimming in Stokes flow using a novel boundary-element method,” Phys. Fluids 25, 061902 (2013).
http://dx.doi.org/10.1063/1.4812246
54.
54. O. S. Pak, S. E. Spagnolie, and E. Lauga, “Hydrodynamics of the double-wave structure of insect spermatozoa flagella,” J. R. Soc. Interface 9, 19081924 (2012).
http://dx.doi.org/10.1098/rsif.2011.0841
55.
55. S. Jung, K. Mareck, L. Fauci, and M. J. Shelley, “Rotational dynamics of a superhelix towed in a Stokes fluid,” Phys. Fluids 19, 103105 (2007).
http://dx.doi.org/10.1063/1.2800287
56.
56. M. Sauzade, G. J. Elfring, and E. Lauga, “Taylor's swimming sheet: Analysis and improvement of the perturbation series,” Physica D 240, 15671573 (2011).
http://dx.doi.org/10.1016/j.physd.2011.06.023
57.
57. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer, 1999), Vol. 1.
58.
58. S. Childress, “Inertial swimmer as a singular perturbation,” in Proceedings of the ASME 2008 Dynamic Systems and Control Conference (Ann Arbour, MI, USA, 2008).
59.
59. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels,” Science 295, 647651 (2002).
http://dx.doi.org/10.1126/science.1066238
60.
60. A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and A. Ajdari, “Patterning flows using grooved surfaces,” Anal. Chem. 74, 53065312 (2002).
http://dx.doi.org/10.1021/ac0257389
61.
61. S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, “Living liquid crystals,” Proc. Natl. Acad. Sci. U.S.A. 111, 12651270 (2014).
http://dx.doi.org/10.1073/pnas.1321926111
62.
62. S. L. Tamm, “Ciliary motion in paramecium a scanning electron microscope study,” J. Cell Biol. 55, 250255 (1972).
http://dx.doi.org/10.1083/jcb.55.1.250
63.
63. K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley, and R. E. Goldstein, “Dancing volvox: Hydrodynamic bound states of swimming algae,” Phys. Rev. Lett. 102, 168101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.168101
64.
64. J. B. Waterbury, J. M. Willey, D. G. Franks, F. W. Valois, and S. W. Watson, “A cyanobacterium capable of swimming motility,” Science 230, 7476 (1985).
http://dx.doi.org/10.1126/science.230.4721.74
65.
65. K. M. Ehlers, A. D. Samuel, H. C. Berg, and R. Montgomery, “Do cyanobacteria swim using traveling surface waves?,” Proc. Natl. Acad. Sci. U.S.A. 93(16), 83408343 (1996).
http://dx.doi.org/10.1073/pnas.93.16.8340
66.
66. H. A. Stone and A. D. T. Samuel, “Propulsion of microorganisms by surface distortions,” Phys. Rev. Lett. 77(19), 41024104 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.4102
67.
67. B. Brahamsha, “Non-flagellar swimming in marine Synechococcus,” J. Mol. Microbiol. Biotechnol. 1, 5962 (1999).
68.
68. K. Ehlers and G. Oster, “On the mysterious propulsion of Synechococcus,” PloS ONE 7, e36081 (2012).
http://dx.doi.org/10.1371/journal.pone.0036081
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871084
Loading
/content/aip/journal/pof2/26/4/10.1063/1.4871084
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/4/10.1063/1.4871084
2014-04-21
2014-09-18

Abstract

Rotating helical bodies of arbitrary cross-sectional profile and infinite length are explored as they swim through or transport a viscous fluid. The Stokes equations are studied in a helical coordinate system, and closed form analytical expressions for the force-free swimming speed and torque are derived in the asymptotic regime of nearly cylindrical bodies. High-order accurate expressions for the velocity field and swimming speed are derived for helical bodies of finite pitch angle through a double series expansion. The analytical predictions match well with the results of full numerical simulations, and accurately predict the optimal pitch angle for a given cross-sectional profile. This work may improve the modeling and design of helical structures used in microfluidic manipulation, synthetic microswimmer engineering, and the transport and mixing of viscous fluids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/4/1.4871084.html;jsessionid=9g5x5yz1xw9p.x-aip-live-02?itemId=/content/aip/journal/pof2/26/4/10.1063/1.4871084&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Swimming and pumping of rigid helical bodies in viscous fluids
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871084
10.1063/1.4871084
SEARCH_EXPAND_ITEM