Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Domingo, L. Vervisch, and J. Réveillon, “DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air,” Combust. Flame 140, 172195 (2005).
2. B. A. McDonald and S. Menon, “Direct numerical simulation of solid propellant combustion in crossflow,” J. Propul. Power 21, 460469 (2005).
3. G. Falkovich, A. Fouxon, and M. G. Stepanov, “Acceleration of rain initiation by cloud turbulence,” Nature (London) 419, 151154 (2002).
4. C. S. Reynolds, The Ecology of Phytoplankton, Ecology, Biodiversity, and Conservation (Cambridge University Press, New York, 2006).
5. L.-P. Wang and M. R. Maxey, “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence,” J. Fluid Mech. 256, 2727 (1993).
6. F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Annu. Rev. Fluid Mech. 41, 375404 (2009).
7. J. Bec, L. Biferale, M. Cencini, A. S. Lanotte, and F. Toschi, “Intermittency in the velocity distribution of heavy particles in turbulence,” J. Fluid Mech. 646, 527536 (2010).
8. M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids 26, 883889 (1983).
9. S. Elghobashi and G. C. Truesdell, “Direct simulation of particle dispersion in a decaying isotropic turbulence,” J. Fluid Mech. 242, 655700 (1992).
10. V. Armenio and V. Fiorotto, “The importance of the forces acting on particles in turbulent flows,” Phys. Fluids 13, 24372440 (2001).
11. M. W. Reeks, “The transport of discrete particles in inhomogeneous turbulence,” J. Aerosol Sci. 14, 729739 (1983).
12. G. Sardina, P. Schlatter, L. Brandt, F. Picano, and C. M. Casciola, “Wall accumulation and spatial localization in particle-laden wall flows,” J. Fluid Mech. 699, 5078 (2012).
13. M. van Aartrijk and H. J. H. Clercx, “Vertical dispersion of light inertial particles in stably stratified turbulence: The influence of the basset force,” Phys. Fluids 22, 013301 (2010).
14. A. Daitche and T. Tél, “Memory effects are relevant for chaotic advection of inertial particles,” Phys. Rev. Lett. 107, 244501 (2011).
15. K. Guseva, U. Feudel, and T. Tél, “Influence of the history force on inertial particle advection: Gravitational effects and horizontal diffusion,” Phys. Rev. E 88, 042909 (2013).
16. R. Mei and R. J. Adrian, “Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number,” J. Fluid Mech. 237, 323341 (1992).
17. P. M. Lovalenti and J. F. Brady, “The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number,” J. Fluid Mech. 256, 561605 (1993).
18. Y. Ling, M. Parmar, and S. Balachandar, “A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows,” Int. J. Multiphase Flow 57, 102114 (2013).
19. S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flow,” Annu. Rev. Fluid Mech. 42, 111133 (2010).
20. M. A. T. van Hinsberg, J. H. M. Thije Boonkkamp, and H. J. H. Clercx, “An efficient, second order method for the approximation of the Basset history force,” J. Comput. Phys. 230, 14651478 (2011).
21. L. Fiabane, R. Zimmermann, R. Volk, J.-F. Pinton, and M. Bourgoin, “Clustering of finite-size particles in turbulence,” Phys. Rev. E 86, 035301 (2012).
22. E. Calzavarini, R. Volk, M. Bourgoin, E. Lévêque, J.-F. Pinton, and F. Toschi, “Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces,” J. Fluid Mech. 630, 179 (2009).

Data & Media loading...


Article metrics loading...



We study the effect of the Basset history force on the dynamics of small particles transported in homogeneous and isotropic turbulence and show that this term, often neglected in previous numerical studies, reduces the small-scale clustering typical of inertial particles. The contribution of this force to the total particle acceleration is, on average, responsible for about 10% of the total acceleration and particularly relevant during rare strong events. At moderate density ratios, i.e., sand or metal powder in water, its presence alters the balance of forces determining the particle acceleration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd