1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 DICCA, University of Genova, Via Montallegro 1, 16145 Genova, Italy
    2 Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131, Padova, Italy
    3 SeRC and Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
    4 Department of Meteorology, SeRC (Swedish e-Science Research Centre), Stockholm University, 106 91 Stockholm, Sweden
    5 Facoltá di Ingegneria e Architettura, UKE Universitá Kore di Enna, Enna 94100, Italy
    6 Stazione Zoologica A. Dohrn, villa Comunale, Naples, Italy
    Phys. Fluids 26, 041704 (2014); http://dx.doi.org/10.1063/1.4871480
/content/aip/journal/pof2/26/4/10.1063/1.4871480
1.
1. P. Domingo, L. Vervisch, and J. Réveillon, “DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air,” Combust. Flame 140, 172195 (2005).
http://dx.doi.org/10.1016/j.combustflame.2004.11.006
2.
2. B. A. McDonald and S. Menon, “Direct numerical simulation of solid propellant combustion in crossflow,” J. Propul. Power 21, 460469 (2005).
http://dx.doi.org/10.2514/1.10049
3.
3. G. Falkovich, A. Fouxon, and M. G. Stepanov, “Acceleration of rain initiation by cloud turbulence,” Nature (London) 419, 151154 (2002).
http://dx.doi.org/10.1038/nature00983
4.
4. C. S. Reynolds, The Ecology of Phytoplankton, Ecology, Biodiversity, and Conservation (Cambridge University Press, New York, 2006).
5.
5. L.-P. Wang and M. R. Maxey, “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence,” J. Fluid Mech. 256, 2727 (1993).
http://dx.doi.org/10.1017/S0022112093002708
6.
6. F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Annu. Rev. Fluid Mech. 41, 375404 (2009).
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
7.
7. J. Bec, L. Biferale, M. Cencini, A. S. Lanotte, and F. Toschi, “Intermittency in the velocity distribution of heavy particles in turbulence,” J. Fluid Mech. 646, 527536 (2010).
http://dx.doi.org/10.1017/S0022112010000029
8.
8. M. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a nonuniform flow,” Phys. Fluids 26, 883889 (1983).
http://dx.doi.org/10.1063/1.864230
9.
9. S. Elghobashi and G. C. Truesdell, “Direct simulation of particle dispersion in a decaying isotropic turbulence,” J. Fluid Mech. 242, 655700 (1992).
http://dx.doi.org/10.1017/S0022112092002532
10.
10. V. Armenio and V. Fiorotto, “The importance of the forces acting on particles in turbulent flows,” Phys. Fluids 13, 24372440 (2001).
http://dx.doi.org/10.1063/1.1385390
11.
11. M. W. Reeks, “The transport of discrete particles in inhomogeneous turbulence,” J. Aerosol Sci. 14, 729739 (1983).
http://dx.doi.org/10.1016/0021-8502(83)90055-1
12.
12. G. Sardina, P. Schlatter, L. Brandt, F. Picano, and C. M. Casciola, “Wall accumulation and spatial localization in particle-laden wall flows,” J. Fluid Mech. 699, 5078 (2012).
http://dx.doi.org/10.1017/jfm.2012.65
13.
13. M. van Aartrijk and H. J. H. Clercx, “Vertical dispersion of light inertial particles in stably stratified turbulence: The influence of the basset force,” Phys. Fluids 22, 013301 (2010).
http://dx.doi.org/10.1063/1.3291678
14.
14. A. Daitche and T. Tél, “Memory effects are relevant for chaotic advection of inertial particles,” Phys. Rev. Lett. 107, 244501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.244501
15.
15. K. Guseva, U. Feudel, and T. Tél, “Influence of the history force on inertial particle advection: Gravitational effects and horizontal diffusion,” Phys. Rev. E 88, 042909 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.042909
16.
16. R. Mei and R. J. Adrian, “Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number,” J. Fluid Mech. 237, 323341 (1992).
http://dx.doi.org/10.1017/S0022112092003434
17.
17. P. M. Lovalenti and J. F. Brady, “The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number,” J. Fluid Mech. 256, 561605 (1993).
http://dx.doi.org/10.1017/S0022112093002885
18.
18. Y. Ling, M. Parmar, and S. Balachandar, “A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows,” Int. J. Multiphase Flow 57, 102114 (2013).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.07.005
19.
19. S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flow,” Annu. Rev. Fluid Mech. 42, 111133 (2010).
http://dx.doi.org/10.1146/annurev.fluid.010908.165243
20.
20. M. A. T. van Hinsberg, J. H. M. Thije Boonkkamp, and H. J. H. Clercx, “An efficient, second order method for the approximation of the Basset history force,” J. Comput. Phys. 230, 14651478 (2011).
http://dx.doi.org/10.1016/j.jcp.2010.11.014
21.
21. L. Fiabane, R. Zimmermann, R. Volk, J.-F. Pinton, and M. Bourgoin, “Clustering of finite-size particles in turbulence,” Phys. Rev. E 86, 035301 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.035301
22.
22. E. Calzavarini, R. Volk, M. Bourgoin, E. Lévêque, J.-F. Pinton, and F. Toschi, “Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces,” J. Fluid Mech. 630, 179 (2009).
http://dx.doi.org/10.1017/S0022112009006880
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871480
Loading
/content/aip/journal/pof2/26/4/10.1063/1.4871480
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/4/10.1063/1.4871480
2014-04-23
2014-07-28

Abstract

We study the effect of the Basset history force on the dynamics of small particles transported in homogeneous and isotropic turbulence and show that this term, often neglected in previous numerical studies, reduces the small-scale clustering typical of inertial particles. The contribution of this force to the total particle acceleration is, on average, responsible for about 10% of the total acceleration and particularly relevant during rare strong events. At moderate density ratios, i.e., sand or metal powder in water, its presence alters the balance of forces determining the particle acceleration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/4/1.4871480.html;jsessionid=1f9m7n3ues7ak.x-aip-live-02?itemId=/content/aip/journal/pof2/26/4/10.1063/1.4871480&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871480
10.1063/1.4871480
SEARCH_EXPAND_ITEM