1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Numerical simulation of bubble dispersion in turbulent Taylor-Couette flow
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/4/10.1063/1.4871728
1.
1. A. Davey, “The growth of Taylor vortices in flow between rotating cylinders,” J. Fluid Mech. 14, 336 (1962).
http://dx.doi.org/10.1017/S0022112062001287
2.
2. C. D. Andereck, S. S. Liu, and H. L. Swinney, “Flow regimes in a circular Couette system with independently rotating cylinders,” J. Fluid Mech. 164, 155183 (1986).
http://dx.doi.org/10.1017/S0022112086002513
3.
3. J. P. Gollub and H. L. Swinney, “Onset of turbulence in a rotating fluid,” Phys. Rev. Lett. 35(14), 927 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.927
4.
4. D. P. Lathrop, J. Fineberg, and H. L. Swinney, “Transition to shear-driven turbulence in Couette-Taylor flow,” Phys. Rev. A 46(10), 6390 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.6390
5.
5. S. Dong, “Direct numerical simulation of turbulent Taylor-Couette flow,” J. Fluid Mech. 587, 373393 (2007).
http://dx.doi.org/10.1017/S0022112007007367
6.
6. M. Bilson and K. Bremhorst, “Direct numerical simulation of turbulent Taylor-Couette flow,” J. Fluid Mech. 579, 227270 (2007).
http://dx.doi.org/10.1017/S0022112007004971
7.
7. A. Barcilon, J. Brindley, M. Lessen, and F. R. Mobbs, “Marginal instability in Taylor-Couette flows at a very high Taylor number,” J. Fluid Mech. 94, 453463 (1979).
http://dx.doi.org/10.1017/S0022112079001129
8.
8. S. Dong, “Herringbone streaks in Taylor-Couette turbulence,” Phys. Rev. E 77, 035301(R) (2008).
http://dx.doi.org/10.1103/PhysRevE.77.035301
9.
9. G. Sridhar and J. Katz, “Effect of entrained bubbles on the structure of vortex rings,” J. Fluid Mech. 397, 171202 (1999).
http://dx.doi.org/10.1017/S0022112099006187
10.
10. A. Ferrante and S. Elghobashi, “On the effects of microbubbles on Taylor-Green vortex flow,” J. Fluid Mech. 572, 145177 (2007).
http://dx.doi.org/10.1017/S0022112006003545
11.
11. E. Climent and J. Magnaudet, “Dynamics of two-dimensional upflowing mixing layer seeded with bubbles: Bubble dispersion and effect of two-way coupling,” Phys. Fluids 18, 103304 (2006).
http://dx.doi.org/10.1063/1.2363968
12.
12. I. M. Mazzitelli, D. Lohse, and F. Toschi, “The effect of microbubbles on developed turbulence,” Phys. Fluids 15(1), L5 (2003).
http://dx.doi.org/10.1063/1.1528619
13.
13. D. Molin, C. Marchioli, and A. Soldati, “Turbulence modulation and microbubble dynamics in vertical channel flow,” Int. J. Multiphase Flows 42, 8095 (2012).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.01.010
14.
14. H. Djéridi, J. F. Favé, J.-Y. Billard, and D. H. Fruman, “Bubble capture and migration in Couette-Taylor flow,” Exp. Fluids 26, 233239 (1999).
http://dx.doi.org/10.1007/s003480050284
15.
15. H. Djeridi, C. Gabillet, and J. Y. Billard, “Two-phase Couette-Taylor flow: Arrangement of the dispersed phase and effects on the flow structures,” Phys. Fluids 16(1), 128 (2004).
http://dx.doi.org/10.1063/1.1630323
16.
16. A. Mehel, C. Gabillet, and H. Djeridi, “Analysis of the flow pattern modifications in a bubbly Couette-Taylor flow,” Phys. Fluids 19, 118101 (2007).
http://dx.doi.org/10.1063/1.2786584
17.
17. T. H. Van den Berg, S. Luther, D. P. Lathrop, and D. Lohse, “Drag reduction in Bubbly Taylor-Couette turbulence,” Phys. Rev. Lett. 94, 044501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.044501
18.
18. T. H. Van den Berg, D. P. M. Van Gils, D. P. Lathrop, and D. Lohse, “Bubbly turbulent drag reduction is a boundary layer effect,” Phys. Rev. Lett. 98, 084501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.084501
19.
19. Y. Murai, H. Oiwa, and Y. Takeda, “Frictional drag reduction in bubbly Couette-Taylor flow,” Phys. Fluids 20, 034101 (2008).
http://dx.doi.org/10.1063/1.2884471
20.
20. Y. Watamura, W. Takeda, and Y. Murai, “Intensified and attenuated waves in a microbubble Taylor-Couette flow,” Phys. Fluids 25, 054107 (2013).
http://dx.doi.org/10.1063/1.4804392
21.
21. D. P. M. Van Gils, G. W. Bruggert, D. P. Lathrop, C. Sun, and D. Lohse, “The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders,” Rev. Sci. Instrum. 82, 025105 (2011).
http://dx.doi.org/10.1063/1.3548924
22.
22. D. P. M. Van Gils, D. Narzeo Guzman, C. Sun, and D. Lohse, “The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow,” J. Fluid Mech. 722, 317347 (2013).
http://dx.doi.org/10.1017/jfm.2013.96
23.
23. E. Climent, M. Simonnet, and J. Magnaudet, “Preferential accumulation of bubbles in Couette-Taylor flow patterns,” Phys. Fluids 19, 083301 (2007).
http://dx.doi.org/10.1063/1.2752839
24.
24. K. Sugiyama, E. Calzavarini, and D. Lohse, “Microbubbly drag reduction in Taylor-Couette flow in the wavy vortex regime,” J. Fluid Mech. 608, 2141 (2008).
http://dx.doi.org/10.1017/S0022112008001183
25.
25. D. Legendre and J. Magnaudet, “The lift force on a spherical bubble in a viscous linear shear flow,” J. Fluid Mech. 368, 81126 (1998).
http://dx.doi.org/10.1017/S0022112098001621
26.
26. I. Calmet and J. Magnaudet, “Statistical structure of high-Reynolds number turbulence close to the free surface of an open-channel flow,” J. Fluid Mech. 474, 355378 (2003).
http://dx.doi.org/10.1017/S0022112002002793
27.
27. J. E. Burkhalter and E. L. Koschmieder, “Steady supercritical Taylor vortex flow,” J. Fluid Mech. 58, 547560 (1973).
http://dx.doi.org/10.1017/S0022112073002326
28.
28. J. E. Burkhalter and E. L. Koschmieder, “Steady supercritical Taylor vortices after sudden starts,” Phys. Fluids 17(11), 1929 (1974).
http://dx.doi.org/10.1063/1.1694646
29.
29. D. Coles, “Transition in circular Couette flow,” J. Fluid Mech. 21, 385425 (1965).
http://dx.doi.org/10.1017/S0022112065000241
30.
30. A. Racina, “Vermischung in Taylor-Couette Strömung,” Ph.D. thesis (Université de Karlsruhe, Juillet, 2008).
31.
31. A. Mehel, “Étude expérimentale d'un écoulement diphasique de Taylor Couette,” Ph.D. thesis (Université de Nantes, Juin, 2006).
32.
32. A. Bouabdallah, “Instabilités et turbulence dans l'écoulement de Taylor-Couette,” Ph.D. thesis (Institut National Polytechnique de Lorraine, Juin, 1980).
33.
33. E. L. Koschmieder, “Turbulent Taylor vortex flow,” J. Fluid Mech. 93, 515527 (1979).
http://dx.doi.org/10.1017/S0022112079002639
34.
34. A. Barcilon and J. Brindley, “Organized structures in turbulent Taylor-Couette flow,” J. Fluid Mech. 143, 429449 (1984).
http://dx.doi.org/10.1017/S0022112084001427
35.
35. F. Wendt, “Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern,” Ingenieur Archiv, 1933.
36.
36. R. Ostilla-Mónico, S. G. Huisman, T. J. G. Jannink, D. P. M. Van Gils, R. Verzicco, S. Grossmann, C. Sun, and D. Lohse, “Optimal Taylor–Couette flow: radius ratio dependence,” J. Fluid Mech. 747, 129 (2014).
37.
37. S. Merbold, H. J. Brauckmann, and C. Egbers, “Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow,” Phys. Rev. E 87, 023014 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.023014
38.
38. J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low reynolds number,” J. Fluid Mech. 177, 133166 (1987).
http://dx.doi.org/10.1017/S0022112087000892
39.
39. B. Eckhardt, L. Grossmann, and D. Lohse, “Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders,” J. Fluid Mech. 581, 221250 (2007).
http://dx.doi.org/10.1017/S0022112007005629
40.
40. D. Pirrò and M. Quadrio, “Direct numerical simulation of turbulent Taylor-Couette flow,” Eur. J. Mech. B/Fluids 27, 552566 (2008).
http://dx.doi.org/10.1016/j.euromechflu.2007.10.005
41.
41. G. P. Smith and A. A. Townsend, “Turbulent Couette flow between concentric cylinders at large Taylor numbers,” J. Fluid Mech. 123, 187217 (1982).
http://dx.doi.org/10.1017/S0022112082003024
42.
42. S. G. Huisman, S. Scharnowski, C. Cierpka, J. Kähler, D. Lohse, and C. Sun, “Logarithmic boundary layers in strong Taylor-Couette turbulence,” Phys. Rev. Lett. 110, 264501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.264501
43.
43. S. Grossmann, C. Sun, and D. Lohse, “Velocity profiles in strongly turbulent Taylor-Couette flow,” Phys. Fluids 26, 025114 (2014).
http://dx.doi.org/10.1063/1.4865818
44.
44. J. Magnaudet and I. Eames, “The motion of high-Reynolds number bubbles in inhomogeneous flow,” Ann. Rev. Fluid Mech. 32, 659700 (2000).
http://dx.doi.org/10.1146/annurev.fluid.32.1.659
45.
45. R. Mei, J. F. Klausner, and C. J. Lawrence, “A note on the history force on a spherical bubble at finite Reynolds number,” Phys. Fluids 6(1), 418420 (1994).
http://dx.doi.org/10.1063/1.868039
46.
46. A. Merle, D. Legendre, and J. Magnaudet, “Forces on a high-Re spherical bubble in a turbulent flow,” J. Fluid Mech. 532, 5362 (2005).
http://dx.doi.org/10.1017/S0022112005004180
47.
47. E. Climent and J. Magnaudet, “Large-scale simulations of bubble-induced convection in a liquid layer,” Phys. Rev. Lett. 82, 4827 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4827
48.
48. D. Legendre, C. Colin, J. Fabre, and J. Magnaudet, “Influence of gravity upon the bubble distribution in a turbulent pipe flow: Comparison between numerical simulations and experimental data,” J. Chim. Phys. 96(6), 951957 (1999).
http://dx.doi.org/10.1051/jcp:1999181
49.
49. T. Wei, E. M. Kline, S. H.-K. Lee, and S. Woodruff, “Görtler vortex formation at the inner cylinder in Taylor-Couette flow,” J. Fluid Mech. 245, 4768 (1992).
http://dx.doi.org/10.1017/S002211209200034X
50.
50. H. J. Brauckmann and B. Eckhardt, “Direct numerical simulations of local and global torque in Taylor-Couette flow up to re=30000,” J. Fluid Mech. 718, 398 (2013).
http://dx.doi.org/10.1017/jfm.2012.618
51.
51. F. Takemura and J. Magnaudet, “The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number,” J. Fluid Mech 495, 235253 (2003).
http://dx.doi.org/10.1017/S0022112003006232
52.
52. A. Giusti, F. Lucci, and A. Soldati, “Influence of the lift force in direct numerical simulation of upward/downward turbulent channel flow laden with surfactant contaminated microbubbles,” Chem. Eng. Sci. 60, 61766187 (2005).
http://dx.doi.org/10.1016/j.ces.2005.02.019
53.
53. R. Adoua, D. Legendre, and J. Magnaudet, “Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow,” J. Fluid Mech. 628, 2341 (2009).
http://dx.doi.org/10.1017/S0022112009006090
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871728
Loading
/content/aip/journal/pof2/26/4/10.1063/1.4871728
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/4/10.1063/1.4871728
2014-04-30
2014-09-18

Abstract

We investigate bubble dispersion in turbulent Taylor-Couette flow. The aim of this study is to describe the main mechanisms yielding preferential bubble accumulation in near-wall structures of the flow. We first proceed to direct numerical simulation of Taylor-Couette flows for three different geometrical configurations (three radius ratios η = / : η = 0.5, η = 0.72, and η = 0.91 with the outer cylinder at rest) and Reynolds numbers corresponding to turbulent regime ranging from 3000 to 8000. The statistics of the flow are discussed using two different averaging procedures that permit to characterize the mean azimuthal velocity, the Taylor vortices contribution and the small-scale turbulent fluctuations. The simulations are compared and validated with experimental and numerical data from literature. The second part of this study is devoted to bubble dispersion. Bubble accumulation is analyzed by comparing the dispersion obtained with the full turbulent flow field to bubble dispersion occurring at lower Reynolds numbers in previous works. Several patterns of preferential accumulation of bubbles have been observed depending on bubble size and the effect of gravity. For the smaller size considered, bubbles disperse homogeneously throughout the gap, while for the larger size they accumulate along the inner wall for the large gap width (η = 0.5). Varying the intensity of buoyancy yields complex evolution of the bubble spatial distribution. For low gravity effect, bubble entrapment is strong leading to accumulation along the inner wall in outflow regions (streaks of low wall shear stress). When buoyancy effect dominates on vortex trapping, bubbles rise through the vortices, while spiral patterns stretched along the inner cylinder are clearly identified. Force balance is analyzed to identify dominating forces leading to this accumulation and accumulation patterns are compared with previous experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/4/1.4871728.html;jsessionid=4sp2q0u00taeu.x-aip-live-03?itemId=/content/aip/journal/pof2/26/4/10.1063/1.4871728&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Numerical simulation of bubble dispersion in turbulent Taylor-Couette flow
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/4/10.1063/1.4871728
10.1063/1.4871728
SEARCH_EXPAND_ITEM