1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA
    2 School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
    3 Lawrence Livermore National Laboratory, Box 808, L-550, Livermore, California 94551-0808, USA
    4 College of Optometry, The Ohio State University, Columbus, Ohio 43210-1280, USA
    a) Author to whom correspondence should be addressed. Electronic mail: braun@math.udel.edu
    b) Present address: Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
    Phys. Fluids 26, 052101 (2014); http://dx.doi.org/10.1063/1.4871714
/content/aip/journal/pof2/26/5/10.1063/1.4871714
1.
1. F. J. Holly and M. A. Lemp, “Tear physiology and dry eyes,” Rev. Surv. Ophthalmol. 22, 6987 (1977).
http://dx.doi.org/10.1016/0039-6257(77)90087-X
2.
2. M. A. Lemp, “The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye workshop,” Ocul. Surf. 5, 7592 (2007).
http://dx.doi.org/10.1016/S1542-0124(12)70081-2
3.
3. Anonymous, “Report of the International Dry Eye WorkShop (DEWS),” Ocul. Surf. 5, 65204 (2007).
4.
4. M. E. Johnson and P. J. Murphy, “Changes in the tear film and ocular surface from dry eye syndrome,” Prog. Ret. Eye Res. 23, 449474 (2004).
http://dx.doi.org/10.1016/j.preteyeres.2004.04.003
5.
5. M. S. Norn, “Semiquantitative interference study of the fatty layer of precorneal film,” Acta Ophthalmol. 57, 766774 (1979).
http://dx.doi.org/10.1111/j.1755-3768.1979.tb01842.x
6.
6. F. J. Holly, “Formation and rupture of the tear film,” Exp. Eye Res. 15, 515525 (1973).
http://dx.doi.org/10.1016/0014-4835(73)90064-X
7.
7. A. J. Bron, J. M. Tiffany, S. M. Gouveia, N. Yokoi, and L. W. Voon, “Functional aspects of the tear film lipid layer,” Exp. Eye Res. 78, 347360 (2004).
http://dx.doi.org/10.1016/j.exer.2003.09.019
8.
8. I. K. Gipson, “Distribution of mucins at the ocular surface,” Exp. Eye Res. 78, 379388 (2004).
http://dx.doi.org/10.1016/S0014-4835(03)00204-5
9.
9. B. Govindarajan and I. K. Gipson, “Membrane-tethered mucins have multiple functions on the ocular surface,” Exp. Eye Res. 90, 655693 (2010).
http://dx.doi.org/10.1016/j.exer.2010.02.014
10.
10. P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye. Res. 29, 357368 (2004).
http://dx.doi.org/10.1080/02713680490516099
11.
11. P. E. King-Smith, J. J. Nichols, K. K. Nichols, and R. J. Braun, “A high resolution microscope for imaging the lipid layer of the tear film,” Ocul. Surf. 9(4), 197211 (2011).
http://dx.doi.org/10.1016/S1542-0124(11)70033-7
12.
12. S. Mishima, A. Gasset, S. D. Klyce, and J. L. Baum, “Determination of tear volume and tear flow,” Invest. Ophthalmol. Visual Sci. 5, 264276 (1966).
13.
13. M. G. Doane, “Blinking and the mechanics of the lacrimal drainage system,” Ophthalmology 88, 844851 (1981).
http://dx.doi.org/10.1016/S0161-6420(81)34940-9
14.
14. H. Zhu and A. Chauhan, “A mathematical model for tear drainage through the canaliculi,” Curr. Eye Res. 30, 621630 (2005).
http://dx.doi.org/10.1080/02713680590968628
15.
15. S. Mishima and D. M. Maurice, “The oily layer of the tear film and evaporation from the corneal surface,” Exp. Eye Res. 1, 3945 (1961).
http://dx.doi.org/10.1016/S0014-4835(61)80006-7
16.
16. A. Tomlinson, M. G. Doane, and A. McFadyen, “Inputs and outputs of the lacrimal system: Review of production and evaporative loss,” Ocul. Surf. 7, 186198 (2009).
http://dx.doi.org/10.1016/S1542-0124(12)70186-6
17.
17. S. H. Kimball, P. E. King-Smith, and J. J. Nichols, “Evidence for the major contribution of evaporation to tear film thinning between blinks,” Invest. Opthalmol. Visual Sci. 51, 62946297 (2010).
http://dx.doi.org/10.1167/iovs.09-4772
18.
18. M. G. Doane, “An instrument for in vivo tear film interferometry,” Optom. Vis. Sci. 66, 383388 (1989).
http://dx.doi.org/10.1097/00006324-198906000-00008
19.
19. P. E. King-Smith, B. A. Fink, J. J. Nichols, K. K. Nichols, R. J. Braun, and G. B. McFadden, “The contribution of lipid layer movement to tear film thinning and breakup,” Invest. Ophthalmol. Visual Sci. 50, 27472756 (2009).
http://dx.doi.org/10.1167/iovs.08-2459
20.
20. J. Wang, D. Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 44, 25242528 (2003).
http://dx.doi.org/10.1167/iovs.02-0731
21.
21. W. W. Harrison, C. G. Begley, H. Liu, M. Chen, M. Garcia, and J. A. Smith, “Menisci and fullness of the blink in dry eye,” Optom. Vis. Sci. 85, 706714 (2008).
http://dx.doi.org/10.1097/OPX.0b013e318181ae02
22.
22. P. E. King-Smith, P. Ramamoorthy, R. J. Braun, and J. J. Nichols, “Tear film images and breakup analyzed using fluorescent quenching,” Invest. Ophthalmol. Visual Sci. 54, 60036011 (2013).
http://dx.doi.org/10.1167/iovs.13-12628
23.
23. D. M. Maurice, “The dynamics and drainage of tears,” Int. Ophthalmol. Clin. 13, 103116 (1973).
http://dx.doi.org/10.1097/00004397-197301310-00009
24.
24. J. R. Lakowicz, Principal of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006).
25.
25. W. R. S. Webber and D. P. Jones, “Continuous fluorophotometric method measuring tear turnover rate in humans and analysis of factors affecting accuracy,” Med. Biol. Eng. Comput. 24, 386392 (1986).
http://dx.doi.org/10.1007/BF02442693
26.
26. J. J. Nichols, P. E. King-Smith, E. A. Hinel, M. Thangavelu, and K. K. Nichols, “The use of fluorescent quenching in studying the contribution of evaporation to tear thinning,” Invest. Ophthalmol. Visual Sci. 53, 54265432 (2012).
http://dx.doi.org/10.1167/iovs.12-10033
27.
27. R. J. Braun, N. Gewwecke, C. G. Begley, P. E. King-Smith, and J. I. Siddique, “A model for tear film thinning with osmolarity and fluorescein,” Invest. Ophthalmol. Visual Sci. 55, 11331142 (2014).
http://dx.doi.org/10.1167/iovs.13-12773
28.
28. J. E. McDonald and S. Brubaker, “Meniscus-induced thinning of tear films,” Am. J. Ophthalmol. 72, 139146 (1971).
29.
29. K. L. Miller, K. A. Polse, and C. J. Radke, “Black line formation and the “perched” human tear film,” Curr. Eye Res. 25, 155162 (2002).
http://dx.doi.org/10.1076/ceyr.25.3.155.13478
30.
30. R. J. Braun, “Dynamics of the tear film,” Annu. Rev. Fluid Mech. 44, 267297 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101042
31.
31. R. E. Berger and S. Corrsin, “A surface tension gradient mechanism for driving the pre-corneal tear film after a blink,” J. Biomech. 7, 225228 (1974).
http://dx.doi.org/10.1016/0021-9290(74)90013-X
32.
32. R. J. Braun, R. Usha, G. B. McFadden, T. A. Driscoll, L. P. Cook, and P. E. King-Smith, “Thin film dynamics on a prolate spheroid with application to the cornea,” J. Eng. Math. 73, 121138 (2012).
http://dx.doi.org/10.1007/s10665-011-9482-4
33.
33. H. Wong, I. Fatt, and C. J. Radke, “Deposition and thinning of the human tear film,” J. Colloid Interface Sci. 184, 4451 (1996).
http://dx.doi.org/10.1006/jcis.1996.0595
34.
34. R. J. Braun and A. D. Fitt, “Modeling the drainage of the precorneal tear film after a blink,” Math. Med. Biol. 20, 128 (2003).
http://dx.doi.org/10.1093/imammb/20.1.1
35.
35. A. Sharma, S. Tiwari, R. Khanna, and J. M. Tiffany, “Hydrodynamics of meniscus-induced thinning of the tear film,” in Advances in Experimental Medicine and Biology, Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2 Vol. 438, edited by D. A. Sullivan, D. A. Dartt, and M. A. Meneray (Springer, Berlin, 1998), pp. 425431.
36.
36. K. N. Winter, D. M. Anderson, and R. J. Braun, “A model for wetting and evaporation of a post-blink precorneal tear film,” Math. Med. Biol. 27, 211225 (2010).
http://dx.doi.org/10.1093/imammb/dqp019
37.
37. L. Li and R. J. Braun, “A model for the human tear film with heating from within the eye,” Phys. Fluids 24, 062103 (2012).
http://dx.doi.org/10.1063/1.4723870
38.
38. M. B. Jones, C. P. Please, D. L. S. McElwain, G. R. Fulford, A. P. Roberts, and M. J. Collins, “Dynamics of tear film deposition and drainage,” Math. Med. Biol. 22, 265288 (2005).
http://dx.doi.org/10.1093/imammb/dqi012
39.
39. M. B. Jones, D. L. S. McElwain, G. R. Fulford, M. J. Collins, and A. P. Roberts, “The effect of the lipid layer on tear film behavior,” Bull. Math. Biol. 68, 13551381 (2006).
http://dx.doi.org/10.1007/s11538-006-9105-9
40.
40. R. J. Braun and P. E. King-Smith, “Model problems for the tear film in a blink cycle: Single equation models,” J. Fluid Mech. 586, 465490 (2007).
http://dx.doi.org/10.1017/S002211200700701X
41.
41. A. Heryudono, R. J. Braun, T. A. Driscoll, L. P. Cook, K. L. Maki, and P. E. King-Smith, “Single-equation models for the tear film in a blink cycle: Realistic lid motion,” Math. Med. Biol. 24, 347377 (2007).
http://dx.doi.org/10.1093/imammb/dqm004
42.
42. V. S. Zubkov, C. J. Breward, and E. A. Gaffney, “Coupling fluid and solute dynamics within the ocular surface tear film: A modelling study of black line osmolarity,” Bull. Math. Biol. 74, 20622093 (2012).
http://dx.doi.org/10.1007/s11538-012-9746-9
43.
43. N. Efron, G. Young, and N. A. Brennan, “Ocular surface temperature,” Curr. Eye Res. 8, 901906 (1989).
44.
44. K. L. Maki, R. J. Braun, W. D. Henshaw, and P. E. King-Smith, “Tear film dynamics on an eye-shaped domain I: Pressure boundary conditions,” Math. Med. Biol. 27, 227254 (2010).
http://dx.doi.org/10.1093/imammb/dqp023
45.
45. K. L. Maki, R. J. Braun, P. Ucciferro, W. D. Henshaw, and P. E. King-Smith, “Tear film dynamics on an eye-shaped domain. Part 2. Flux boundary conditions,” J. Fluid Mech. 647, 361390 (2010).
http://dx.doi.org/10.1017/S002211200999382X
46.
46. P. E. King-Smith, B. A. Fink, N. Fogt, K. K. Nichols, R. M. Hill, and G. S. Wilson, “The thickness of the human precorneal tear film: Evidence from reflection spectra,” Invest. Ophthalmol. Visual Sci. 41, 33483359 (2000).
47.
47. K. L. Maki, R. J. Braun, T. A. Driscoll, and P. E. King-Smith, “An overset grid method for the study of reflex tearing,” Math. Med. Biol. 25, 187214 (2008).
http://dx.doi.org/10.1093/imammb/dqn013
48.
48. V. S. Ajaev and G. M. Homsy, “Steady vapor bubbles in rectangular microchannels,” J. Colloid Interface Sci. 240, 259271 (2001).
http://dx.doi.org/10.1006/jcis.2001.7562
49.
49. H. Owens and J. Phillips, “Spread of the tears after a blink: Velocity and stabilization time in healthy eyes,” Cornea 20, 484487 (2001).
http://dx.doi.org/10.1097/00003226-200107000-00009
50.
50. John M. Tiffany, “The viscosity of human tears,” Int. Ophthalmol. 15, 371376 (1991).
http://dx.doi.org/10.1007/BF00137947
51.
51. B. Nagyová and J. M. Tiffany, “Components of tears responsible for surface tension,” Curr. Eye Res. 19, 411 (1999).
http://dx.doi.org/10.1076/ceyr.19.1.4.5341
52.
52. T. R. Golding, A. S. Bruce, and J. C. Mainstone, “Relationship between tear-meniscus parameters and tear-film breakup,” Cornea 16, 649661 (1997).
http://dx.doi.org/10.1097/00003226-199711000-00009
53.
53. W. D. Mathers and T. E. Daley, “Tear flow and evaporation in patients with and without dry eye,” Ophthalmol. 103, 664669 (1996).
http://dx.doi.org/10.1016/S0161-6420(96)30637-4
54.
54. G. Chesshire and W. D. Henshaw, “Composite overlapping meshes for the solution of partial differential equations,” J. Comput. Phys. 90, 164 (1990).
http://dx.doi.org/10.1016/0021-9991(90)90196-8
55.
55. W. D. Henshaw, “Ogen: The overture overlapping grid generator,” Technical Report UCRL-MA-132237, Lawrence Livermore National Laboratory, 2002.
56.
56. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (SIAM, Philadelphia, 1996).
57.
57. K. L. Maki, “Computational solutions of linear systems and models of the human tear film,” Ph.D. thesis (University of Delaware, 2009).
58.
58. P. E. King-Smith, J. J. Nichols, K. K. Nichols, B. A. Fink, and R. J. Braun, “Contributions of evaporation and other mechanisms to tear film thinning and breakup,” Optom. Vis. Sci. 85, 623630 (2008).
http://dx.doi.org/10.1097/OPX.0b013e318181ae60
59.
59. J. J. Nichols, G. L. Mitchell, and P. E. King-Smith, “Thinning rate of the precorneal and prelens tear films,” Invest. Ophthalmol. Visual Sci. 46, 23532361 (2005).
http://dx.doi.org/10.1167/iovs.05-0094
60.
60. D. T. Liu, M. A. Di Pascuale, J. Sawai, Y. Y. Gao, and S. C. Tseng, “Tear film dynamics in floppy eyelid syndrome,” Invest. Ophthalmol. Visual Sci. 46, 11881194 (2005).
http://dx.doi.org/10.1167/iovs.04-0913
61.
61. M. A. Lemp, A. J. Bron, C. Baudoin, J. M. Benítez Del Castillo, D. Geffen, G. N. Foulks, J. Tauber, J. S. Pepose, and B. D. Sullivan, “Tear osmolarity in the diagnosis and management of dry eye disease,” Am. J. Ophthalmol. 151, 792798 (2011).
http://dx.doi.org/10.1016/j.ajo.2010.10.032
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4871714
Loading
/content/aip/journal/pof2/26/5/10.1063/1.4871714
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/5/10.1063/1.4871714
2014-05-06
2014-08-20

Abstract

We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the computational framework. experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed .

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/5/1.4871714.html;jsessionid=4a9aj9d7q56te.x-aip-live-02?itemId=/content/aip/journal/pof2/26/5/10.1063/1.4871714&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4871714
10.1063/1.4871714
SEARCH_EXPAND_ITEM