1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Formulation of the undertow using linear wave theory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/5/10.1063/1.4872160
1.
1. M. Dyhr-Nielsen and T. Sørensen, “Sand transport phenomena on coasts with bars” in Proceedings of the 12th International Conference on Coastal Engineering, Washington D.C., USA (ASCE, 1970), pp. 855866.
2.
2. W. R. Dally, “A Numerical model for beach profile evolution,” M.S. thesis (University of Delaware, 1980).
3.
3. J. Fredsøe and R. Deigaard, Mechanics of Coastal Sediment Transport (World Sci., Singapore, 1992).
4.
4. P. Nielsen, Coastal Bottom Boundary Layers and Sediment Transport (World Sci., Singapore, 1982).
5.
5. L. van Rijn, Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas (Aqua Publications, Blokzijl, The Netherlands, 1993).
6.
6. R. Soulsby, Dynamics of Marine Sands (Thomas Telford Ltd., London, United Kingdom, 1997).
7.
7. D. M. Hanes and D. A. Huntley, “Continuous measurements of suspended sand concentration in a wave dominated nearshore environment,” Cont. Shelf Res. 6, 585 (1986).
http://dx.doi.org/10.1016/0278-4343(86)90024-5
8.
8. D. C. Conley and R. A. Beach, “Cross-shore sediment transport partitioning in the nearshore during a storm event,” J. Geophys. Res. 108(C3), 3065, doi:10.1029/2001JC001230 (2003).
http://dx.doi.org/10.1029/2001JC001230
9.
9. P. D. Osborne and B. Greenwood, “Frequency dependent cross-shore suspended sediment transport. 2. A non-barred shoreface,” Mar. Geol. 106, 25 (1992).
http://dx.doi.org/10.1016/0025-3227(92)90053-K
10.
10. N. Kumar, G. Voulgaris, and J. C. Warner, “Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications,” Coastal Eng. 58, 1097 (2011).
http://dx.doi.org/10.1016/j.coastaleng.2011.06.009
11.
11. P. F. Newberger and J. S. Allen, “Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation,” J. Geophys. Res. 112(C8), C08018, doi:10.1029/2006JC003472 (2007).
http://dx.doi.org/10.1029/2006JC003472
12.
12. E. D. Christensen, D.-J. Walstra, and N. Emerat, “Vertical variation of the flow across the surf zone,” Coastal Eng. 45, 169 (2002).
http://dx.doi.org/10.1016/S0378-3839(02)00033-9
13.
13. D. Roelvink, A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, and J. Lescinski, “Modelling storm impacts on beaches, dunes and barrier islands,” Coastal Eng. 56, 1133 (2009).
http://dx.doi.org/10.1016/j.coastaleng.2009.08.006
14.
14. I. A. Svendsen, “Wave heights and set-up in a surf zone,” Coastal Eng. 8, 303 (1984).
http://dx.doi.org/10.1016/0378-3839(84)90028-0
15.
15. R. Deigaard, P. Justensen, and J. Fredsøe, “Modelling of undertow by a one-equation turbulence model,” Coastal Eng. 15, 431 (1991).
http://dx.doi.org/10.1016/0378-3839(91)90022-9
16.
16. J. H. Haines and A. H. Sallenger, “Vertical structure of mean cross-shore currents across a barred surf zone,” J. Geophys. Res. 99, 14223, doi:10.1029/94JC00427 (1994).
http://dx.doi.org/10.1029/94JC00427
17.
17. A. F. Garcez-Faria, E. B. Thornton, T. C. Lippmann, and T. P. Stanton, “Undertow over a barred beach,” J. Geophys. Res. 105, 16999, doi:10.1029/2000JC900084 (2000).
http://dx.doi.org/10.1029/2000JC900084
18.
18. M. J. F. Stive and H. G. Wind, “Cross-shore mean flow in the surf zone,” Coastal Eng. 10, 325 (1986).
http://dx.doi.org/10.1016/0378-3839(86)90019-0
19.
19. R. Deigaard and J. Fredsøe, “Shear stress distribution in dissipative water waves,” Coastal Eng. 13, 357 (1989).
http://dx.doi.org/10.1016/0378-3839(89)90042-2
20.
20. M. J. F. Stive and H. J. de Vriend, “Shear stresses and mean flow in shoaling and breaking waves,” in Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan (ASCE, 1994), pp. 594608.
21.
21. I. A. Svendsen, “Mass flux and undertow in the surf zone,” Coastal Eng. 8, 347 (1984).
http://dx.doi.org/10.1016/0378-3839(84)90030-9
22.
22. K. Nadaoka and T. Kondoh, “Laboratory measurements of velocity field structure in the surf zone by LDV,” Coastal Eng. Jpn. 25, 125 (1982).
23.
23. M. J. F. Stive and H. G. Wind, “A Study of radiation stress and set-up in the nearshore region,” Coastal Eng. 6, 1 (1982).
http://dx.doi.org/10.1016/0378-3839(82)90012-6
24.
24. D. T. Cox, N. Kobayashi, and A. Okayasu, “Bottom shear stress in the surf zone,” J. Geophys. Res. 101(C6), 1433714348, doi:10.1029/96JC00942 (1996).
http://dx.doi.org/10.1029/96JC00942
25.
25. Y. Tajima and O. S. Madsen, “Modeling near-shore waves, surface rollers, and undertow velocity profiles,” J. Waterw. Port, Coastal, Ocean Eng. 132, 429 (2006).
http://dx.doi.org/10.1061/(ASCE)0733-950X(2006)132:6(429)
26.
26. O. S. Borekci, “Distribution of wave-induced momentum fluxes over depth and application within the surf-zone,” Ph.D. thesis (University of Delaware, 1982).
27.
27. W. R. Dally and R. G. Dean, “Suspended sediment transport and beach profile evolution,” J. Waterw. Port, Coast. Ocean Eng. 110, 15 (1984).
http://dx.doi.org/10.1061/(ASCE)0733-950X(1984)110:1(15)
28.
28. A. Apotsos, B. Raubenheimer, S. Elgar, R. T. Guza, and J. A. Smith, “Effects of wave rollers and bottom stress on wave setup,” J. Geophys. Res. 112(C2), C02003, doi:10.1029/2006JC003549 (2007).
http://dx.doi.org/10.1029/2006JC003549
29.
29. D. T. Cox and N. Kobayashi, “Kinematic undertow model with logarithmic boundary layer,” J. Waterw. Port, Coast. Ocean Eng. 123, 354 (1997).
http://dx.doi.org/10.1061/(ASCE)0733-950X(1997)123:6(354)
30.
30. A. J. H. M. Reniers, E. B. Thornton, T. P. Stanton, and J. A. Roelvink, “Vertical flow structure during sandy duck: Observations and modeling,” Coastal Eng. 51, 237 (2004).
http://dx.doi.org/10.1016/j.coastaleng.2004.02.001
31.
31. K. A. Rakha, “A quasi-3D phase-resolving hydrodynamic and sediment transport model,” Coastal Eng. 34, 277 (1998).
http://dx.doi.org/10.1016/S0378-3839(98)00030-1
32.
32. M. W. Dingemans, A. C. Radder, and H. J. de Vriend, “Computation of the driving forces of wave-induced currents,” Coastal Eng. 11, 539 (1987).
http://dx.doi.org/10.1016/0378-3839(87)90026-3
33.
33. H. J. de Vriend and N. Kitou, “Incorporation of wave effects in a 3D hydrostatic mean current model,” in Proceedings of the 22nd International Conference on Coastal Engineering, Reston, VA (ASCE, 1990), pp. 10051018.
34.
34. K. Spielmann, D. Astruc, and O. Thual, “Analysis of some key parametrizations in a beach profile morphodynamical model,” Coastal Eng. 51, 1021 (2004).
http://dx.doi.org/10.1016/j.coastaleng.2004.07.020
35.
35. P. F. Newberger and J. S. Allen, “Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94,” J. Geophys. Res. 112(C8), C08019, doi:10.1029/2006JC003474 (2007).
http://dx.doi.org/10.1029/2006JC003474
36.
36. I. A. Svendsen, Introduction to Nearshore Hydrodynamics (World Sci., Singapore, 2006).
37.
37. R. G. Dean and R. A. Dalrymple, Water Wave Mechanics for Engineers and Scientists (World Sci., Singapore, 1984).
38.
38. C. P. Scott, D. T. Cox, T. B. Maddux, and J. W. Long, “Large-scale laboratory observations of turbulence on a fixed barred beach,” Meas. Sci. Technol. 16, 1903 (2005).
http://dx.doi.org/10.1088/0957-0233/16/10/004
39.
39. I. A. Svendsen, H. A. Schäffer, and J. B. Hansen, “The interaction between the undertow and the boundary layer flow on a beach,” J. Geophys. Res. 92, 11845, doi:10.1029/JC092iC11p11845 (1987).
http://dx.doi.org/10.1029/JC092iC11p11845
40.
40. F. J. Rivero and A. S. Arcilla, “On the vertical distribution of <uw>,” Coastal Eng. 25, 137 (1995).
http://dx.doi.org/10.1016/0378-3839(95)00008-Y
41.
41. Q. Zou, A. J. Bowen, and A. E. Hay, “Vertical distribution of wave shear stress in variable water depth: Theory and field observations,” J. Geophys. Res. 111(C9), C09032, doi:10.1029/2005JC003300 (2006).
http://dx.doi.org/10.1029/2005JC003300
42.
42. I. G. Jonsson, “Wave boundary layers and friction factors,” in Proceedings of the 10th International Conference on Coastal Engineering, Tokyo, Japan (ASCE, 1966), pp. 127148.
43.
43. I. A. Svendsen, “On the formulation of the cross-shore wave-current problem,” in Proceedings of the European Workshop on Coastal Zones, Loutraki, Greece (National Technical University of Athens, 1985).
44.
44. R. Deigaard, “A note on the three-dimensional shear stress distribution in a surf zone,” Coastal Eng. 20, 157 (1993).
http://dx.doi.org/10.1016/0378-3839(93)90059-H
45.
45. R. B. Nairn, J. A. Roelvink, and H. N. Southgate, “Transition zone with and implications for modelling surfzone hydrodynamics,” in Proceedings of the 22nd International Conference on Coastal Engineering, Delft, The Netherlands (ASCE, 1990), pp. 6881.
46.
46. G. Guannel, “Observations of cross-shore sediment transport and formulation of the undertow,” Ph.D. thesis (Oregon State University, 2009).
47.
47. J. A. Smith, “Wave-current interactions in finite depth,” J. Phys. Oceanogr. 36(7), 14031419 (2006).
http://dx.doi.org/10.1175/JPO2911.1
48.
48. K. Hasselmann, “On the mass and momentum transfer between short gravity waves and larger-scale-motions,” J. Fluid Mech. 50, 189 (1971).
http://dx.doi.org/10.1017/S0022112071002520
49.
49. V. P. Starr, “A momentum integral for surface waves in deep water,” J. Mar. Res. 6(2), 126135 (1947).
50.
50. F. P. Bretherton and C. J. R. Garrett, “Wavetrains in inhomogeneous moving media,” Proc. R. Soc. London, Ser. A 302, 529 (1968).
http://dx.doi.org/10.1098/rspa.1968.0034
51.
51. J. B. Christoffersen and I. G. Jonsson, “A note on wave action conservation in a dissipative current wave motion,” Appl. Ocean Res. 2, 179 (1980).
http://dx.doi.org/10.1016/0141-1187(80)90016-4
52.
52. J. B. Christoffersen, “Current depth refraction of dissipative water waves,” Series Paper No. 30 (Institute of Hydrodynamic and Hydraulic Engineering, Technical University of Denmark, 1982).
53.
53. W. R. Dally and R. G. Dean, “Mass flux and undertow in a surf zone, by I. A. Svendsen – Discussion,” Coastal Eng. 10, 289 (1986).
http://dx.doi.org/10.1016/0378-3839(86)90046-3
54.
54. I. A. Svendsen, “Mass flux and undertow in a surf zone, by I. A. Svendsen - Reply,” Coastal Eng. 10, 299 (1986).
http://dx.doi.org/10.1016/0378-3839(86)90047-5
55.
55. M. Cambazoglu and K. Haas, “Numerical modeling of breaking waves and cross-shore currents on barred beaches,” J. Waterw. Port, Coastal, Ocean Eng. 137, 310 (2011).
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000096
56.
56. M. S. Longuet-Higgins and R. W. Stewart, “Radiation stress and mass transport in gravity waves, with application to surf beats,” J. Fluid Mech. 13, 481 (1962).
http://dx.doi.org/10.1017/S0022112062000877
57.
57. M. S. Longuet-Higgins and R. W. Stewart, “Radiation stresses in water waves: A physical discussion with applications,” Deep Sea Res. 11, 529 (1964).
58.
58. C. C. Mei, The Applied Dynamics of Ocean Surface Waves (World Sci., Singapore, 1989).
59.
59. O. M. Phillips, The Dynamics of the Upper Ocean, 2nd ed. (Cambridge University Press, New York, USA, 1977).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4872160
Loading
/content/aip/journal/pof2/26/5/10.1063/1.4872160
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/5/10.1063/1.4872160
2014-05-13
2015-07-29

Abstract

The undertow is one of the most important mechanisms for sediment transport in nearshore regions. As such, its formulation has been an active subject of research for at least the past 40 years. Still, much debate persists on the exact nature of the forcing and theoretical expression of this current. Here, assuming linear wave theory and keeping most terms in the wave momentum equations, a solution to the undertow in the surf zone is derived, and it is shown that it is unique. It is also shown that, unless they are erroneous, most solutions presented in the literature are identical, albeit simplified versions of the solution presented herein. Finally, it is demonstrated that errors in past derivations of the undertow profile stem from inconsistencies between (1) the treatment of advective terms in the momentum equations and the wave action equation, (2) the expression of the mean current equation and the surface shear stress, and (3) the omission of bottom shear stress in the momentum equation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/5/1.4872160.html;jsessionid=38n96k0wn0smd.x-aip-live-06?itemId=/content/aip/journal/pof2/26/5/10.1063/1.4872160&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Formulation of the undertow using linear wave theory
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4872160
10.1063/1.4872160
SEARCH_EXPAND_ITEM