1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Sedimentation of an ellipsoidal particle in narrow tubes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/5/10.1063/1.4874606
1.
1. G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. London, Ser. A 102, 161 (1922).
http://dx.doi.org/10.1098/rspa.1922.0078
2.
2. A. Karnis, H. L. Goldsmith, and S. G. Mason, “The flow of suspensions through tubes. Part 5: Inertial effects,” Can. J. Chem. Eng. 44, 181 (1966).
http://dx.doi.org/10.1002/cjce.5450440401
3.
3. D. Broday, M. Fichman, M. Shapiro, and C. Gutfinger, “Motion of spheroidal particles in vertical shear flows,” Phys. Fluids 10, 86 (1998).
http://dx.doi.org/10.1063/1.869552
4.
4. H. Liu, H. H. Bau, and H. H. Hu, “On the translation of a cylinder in a long tube,” Phys. Fluids 16, 998 (2004).
http://dx.doi.org/10.1063/1.1650334
5.
5. R. G. Cox, “The steady motion of a particle of arbitrary shape at small Reynolds numbers,” J. Fluid Mech. 23, 625 (1965).
http://dx.doi.org/10.1017/S0022112065001593
6.
6. W. B. Russel, E. J. Hinch, L. G. Leal, and G. Tieffenbruck, “Rods falling near a vertical wall,” J. Fluid Mech. 83, 273 (1977).
http://dx.doi.org/10.1017/S0022112077001190
7.
7. J. F. Brady and G. Bossis, “Stokesian dynamics,” Ann Rev. Fluid Mech. 20, 111 (1988).
http://dx.doi.org/10.1146/annurev.fl.20.010188.000551
8.
8. M. Sugihara-Seki, “The motion of an ellipsoid in tube flow at low Reynolds numbers,” J. Fluid Mech. 324, 287 (1996).
http://dx.doi.org/10.1017/S0022112096007926
9.
9. T. N. Swaminathan, K. Mukundakrishnan, and H. H. Hu, “Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers,” J. Fluid Mech. 551, 357 (2006).
http://dx.doi.org/10.1017/S0022112005008402
10.
10. R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux, “A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow,” J. Comput. Phys. 169, 363 (2001).
http://dx.doi.org/10.1006/jcph.2000.6542
11.
11. E. Ding and C. K. Aidun, “The dynamics and scaling law for particles suspended in shear flow with inertia,” J. Fluid Mech. 423, 317 (2000).
http://dx.doi.org/10.1017/S0022112000001932
12.
12. Z. Xia, K. W. Connington, S. Rapaka, P. Yue, J. J. Feng, and S. Chen, “Flow patterns in the sedimentation of an elliptical particle,” J. Fluid Mech. 625, 249 (2009).
http://dx.doi.org/10.1017/S0022112008005521
13.
13. H. Huang, X. Yang, M. Krafczyk, and X.-Y. Lu, “Rotation of spheroidal particles in Couette flows,” J. Fluid Mech. 692, 369 (2012).
http://dx.doi.org/10.1017/jfm.2011.519
14.
14. C. M. Zettner and M. Yoda, “Moderate-aspect-ratio elliptical cylinders in simple shear with inertia,” J. Fluid Mech. 442, 241 (2001).
http://dx.doi.org/10.1017/S0022112001005006
15.
15. D. Qi and L.-S. Luo, “Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flows,” J. Fluid Mech. 477, 201 (2003).
http://dx.doi.org/10.1017/S0022112002003191
16.
16. J. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of initial-value problems for the motion of solid bodies in a Newtonian fluid. 1. Sedimentation,” J. Fluid Mech. 261, 95 (1994).
http://dx.doi.org/10.1017/S0022112094000285
17.
17. D. Karamanev, C. Chavarie, and R. Mayer, “Dynamics of the free rise of a light solid sphere in liquid,” AIChE J. 42, 1789 (1996).
http://dx.doi.org/10.1002/aic.690420630
18.
18. P. Ern, F. Risso, D. Fabre, and J. Magnaudet, “Wake-induced oscillatory paths of bodies freely rising or falling in fluids,” Ann. Rev. Fluid Mech. 44, 97 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101250
19.
19. F. Auguste, J. Magnaudet, and D. Fabre, “Falling styles of disks,” J. Fluid Mech. 719, 388 (2013).
http://dx.doi.org/10.1017/jfm.2012.602
20.
20. T. Deloze, Y. Hoarau, and J. Dušek, “Transition scenario of a sphere freely falling in a vertical tube,” J. Fluid Mech. 711, 40 (2012).
http://dx.doi.org/10.1017/jfm.2012.362
21.
21. A. J. C. Ladd, “Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation,” J. Fluid Mech. 271, 285 (1994).
http://dx.doi.org/10.1017/S0022112094001771
22.
22. A. J. C. Ladd, “Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results,” J. Fluid Mech. 271, 311 (1994).
http://dx.doi.org/10.1017/S0022112094001783
23.
23. C. K. Aidun, Y. Lu, and E. E. Ding, “Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation,” J. Fluid Mech. 373, 287 (1998).
http://dx.doi.org/10.1017/S0022112098002493
24.
24. P. Lallemand and L.-S. Luo, “Lattice Boltzmann method for moving boundaries,” J. Comput. Phys. 184, 406 (2003).
http://dx.doi.org/10.1016/S0021-9991(02)00022-0
25.
25. D. d'Humiéres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions,” Philos. Trans. R. Soc. Lond A 360, 437 (2002).
http://dx.doi.org/10.1098/rsta.2001.0955
26.
26. M. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a Boltzmann-lattice fluid with boundaries,” Phys. Fluids 13, 3452 (2001).
http://dx.doi.org/10.1063/1.1399290
27.
27. R. Mei, D. Yu, W. Shyy, and L.-S. Luo, “Force evaluation in the lattice Boltzmann method involving curved geometry,” Phys. Rev. E 65, 041203 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.041203
28.
28. Z.-G. Feng and E. E. Michaelides, “The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems,” J. Comput. Phys. 195, 602 (2004).
http://dx.doi.org/10.1016/j.jcp.2003.10.013
29.
29. A. J. C. Ladd and R. Verberg, “Lattice-Boltzmann simulations of particle-fluid suspensions,” J. Stat. Phys. 104, 1191 (2001).
http://dx.doi.org/10.1023/A:1010414013942
30.
30. O. Filippova and D. Hänel, “Grid refinement for lattice-BGK models,” J. Comput. Phys. 147, 219 (1998).
http://dx.doi.org/10.1006/jcph.1998.6089
31.
31. C. K. Aidun and E. Ding, “Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state,” Phys. Fluids 15, 1612 (2003).
http://dx.doi.org/10.1063/1.1571825
32.
32. A. Karnis, H. L. Goldsmith, and S. G. Mason, “Axial migration of particles in Poiseuille flow,” Nature (London) 200, 159 (1963).
http://dx.doi.org/10.1038/200159a0
33.
33. Y. J. Liu, J. Nelson, J. Feng, and D. D. Joseph, “Anomalous rolling of spheres down an inclined plane,” J. Non-Newtonian Fluid Mech. 50, 305 (1993).
http://dx.doi.org/10.1016/0377-0257(93)80036-B
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4874606
Loading
/content/aip/journal/pof2/26/5/10.1063/1.4874606
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/5/10.1063/1.4874606
2014-05-07
2014-08-28

Abstract

Sedimentation behaviours of an ellipsoidal particle in narrow and infinitely long tubes are studied by a multi-relaxation-time lattice Boltzmann method (LBM). In the present study, both circular and square tubes with 12/13 ⩽ / ⩽ 2.5 are considered with the Galileo number () up to 150, where and are the width of the tube and the length of major axis of the ellipsoid, respectively. Besides three modes of motion mentioned in the literature, two novel modes are found for the narrow tubes in the higher regime: the spiral mode and the vertically inclined mode. Near a transitional regime, in terms of average settling velocity, it is found that a lighter ellipsoid may settle faster than a heavier one. The relevant mechanism is revealed. The behaviour of sedimentation inside the square tubes is similar to that in the circular tubes. One significant difference is that the translation and rotation of ellipsoid are finally constrained to a diagonal plane in the square tubes. The other difference is that the anomalous rolling mode occurs in the square tubes. In this mode, the ellipsoid rotates as if it is contacting and rolling up one corner of the square tube when it settles down. Two critical factors that induce this mode are identified: the geometry of the tube and the inertia of the ellipsoid.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/5/1.4874606.html;jsessionid=1lw1cg4lqkukh.x-aip-live-03?itemId=/content/aip/journal/pof2/26/5/10.1063/1.4874606&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sedimentation of an ellipsoidal particle in narrow tubes
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4874606
10.1063/1.4874606
SEARCH_EXPAND_ITEM