Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/5/10.1063/1.4874881
1.
1. Lord Rayleigh, Scientific Papers (Dover, New York, 1965), Vol. 2.
2.
2. G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I,” Proc. R. Soc. London, Ser. A 201, 192 (1950).
http://dx.doi.org/10.1098/rspa.1950.0052
3.
3. R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297 (1960).
http://dx.doi.org/10.1002/cpa.3160130207
4.
4. E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Fluid Dyn. 4, 101 (1969).
http://dx.doi.org/10.1007/BF01015969
5.
5. D. H. Sharp, “An overview of Rayleigh-Taylor instability,” Physica D 12, 3 (1984).
http://dx.doi.org/10.1016/0167-2789(84)90510-4
6.
6. H. J. Kull, “Theory of the Rayleigh-Taylor instability,” Phys. Rep. 206, 197 (1991).
http://dx.doi.org/10.1016/0370-1573(91)90153-D
7.
7. M. Brouillette, “The Richtmyer-Meshkov instability,” Annu. Rev. Fluid Mech. 34, 445 (2002).
http://dx.doi.org/10.1146/annurev.fluid.34.090101.162238
8.
8. J. D. Lindl, Inertial Confinement Fusion (Springer, New York, 1998).
9.
9. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature (London) 239, 139 (1972).
http://dx.doi.org/10.1038/239139a0
10.
10. S. P. Regan, R. Epstein, B. A. Hammel, L. J. Suter, H. A. Scott, M. A. Barrios, D. K. Bradley, D. A. Callahan, C. Cerjan, G. W. Collins, S. N. Dixit, T. Doppner, M. J. Edwards, D. R. Farley, K. B. Fournier, S. Glenn, S. H. Glenzer, I. E. Golovkin, S. W. Haan, A. Hamza, D. G. Hicks, N. Izumi, O. S. Jones, J. D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, T. Ma, J. J. MacFarlane, A. J. MacKinnon, R. C. Mancini, R. L. McCrory, N. B. Meezan, D. D. Meyerhofer, A. Nikroo, H.-S. Park, J. Ralph, B. A. Remington, T. C. Sangster, V. A. Smalyuk, P. T. Springer, and R. P. J. Town, “Hot-spot mix in ignition-scale inertial confinement fusion targets,” Phys. Rev. Lett. 111, 045001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.045001
11.
11. W. H. Liu, L. F. Wang, W. H. Ye, and X. T. He, “Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood number,” Phys. Plasmas 19, 042705 (2012).
http://dx.doi.org/10.1063/1.3702063
12.
12. K. O. Mikaelian, “Growth rate of the Richtmyer-Meshkov instability at shocked interfaces,” Phys. Rev. Lett. 71, 2903 (1993);
http://dx.doi.org/10.1103/PhysRevLett.71.2903
12.K. O. MikaelianFreeze-out and the effect of compressibility in the Ricthmyer-Meshkov instability,” Phys. Fluids 6, 356 (1994).
http://dx.doi.org/10.1063/1.868091
13.
13. J. Boussinesq, Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section (Gauthier-Villars et fils, Paris, 1897), Vol. 1.
14.
14. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1968).
15.
15. H. Aref and G. Tryggvason, “Model of Rayleigh-Taylor instability,” Phys. Rev. Lett. 62, 749 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.749
16.
16. A. Pumir and E. D. Siggia, “Development of singular solutions to the axisymmetrical Euler equations,” Phys. Fluids A 4, 1472 (1992).
http://dx.doi.org/10.1063/1.858422
17.
17. M. Chertkov, “Phenomenology of Rayleigh-Taylor turbulence,” Phys. Rev. Lett. 91, 115001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.115001
18.
18. J. R. Ristorcelli and T. T. Clark, “Rayleigh-Taylor turbulence: Self-similar analysis and direct numerical simulations,” J. Fluid Mech. 507, 213 (2004).
http://dx.doi.org/10.1017/S0022112004008286
19.
19. H. G. Lee and J. Kim, “A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows,” J. Eng. Math. 75, 15 (2012).
http://dx.doi.org/10.1007/s10665-011-9504-2
20.
20. K. O. Mikaelian, “Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers,” Phys. Rev. E 67, 026319 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.026319
21.
21. D. J. Lewis, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II,” Proc. R. Soc. London, Ser. A 202, 81 (1950).
http://dx.doi.org/10.1098/rspa.1950.0086
22.
22. R. E. Tipton, in Megagauss Technology and Pulsed Power Applications, edited by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum, New York, 1987);
22.R. T. Barton, in Numerical Astrophysics, edited by J. M. Centrella, J. M. LeBlanc, R. L. Bowers, and J. A. Wheeler (Jones and Bartlett, Boston, 1985).
23.
23. D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1 (1955).
http://dx.doi.org/10.1086/146048
24.
24. J. Hecht, U. Alon, and D. Shvarts, “Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts,” Phys. Fluids 6, 4019 (1994).
http://dx.doi.org/10.1063/1.868391
25.
25. K. O. Mikaelian, “Analytic approach to nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. Lett. 80, 508 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.508
26.
26. Q. Zhang, “Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing,” Phys. Rev. Lett. 81, 3391 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3391
27.
27. V. N. Goncharov, “Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88, 134502 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.134502
28.
28. K. O. Mikaelian, “Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities,” Phys. Fluids 21, 024103 (2009).
http://dx.doi.org/10.1063/1.3073746
29.
29. K. O. Mikaelian, “Limitations and failures of the Layzer model for hydrodynamic instabilities,” Phys. Rev. E 78, 015303 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.015303
30.
30. Y. Yang, Q. Zhang, and D. H. Sharp, “Small amplitude theory of Richtmyer–Meshkov instability,” Phys. Fluids 6, 1856 (1994).
http://dx.doi.org/10.1063/1.868245
31.
31. R. Samtaney, “A method to simulate linear stability of impulsively accelerated density interfaces in ideal-MHD and gas dynamics,” J. Comput. Phys. 228, 6773 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.05.042
32.
32. G. Fraley, “Rayleigh–Taylor stability for a normal shock wave–density discontinuity interaction,” Phys. Fluids 29, 376 (1986).
http://dx.doi.org/10.1063/1.865722
33.
33. M. Vandenboomgaerde, C. Mügler, and S. Gauthier, “Impulsive model for the Richtmyer-Meshkov instability,” Phys. Rev. E 58, 1874 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.1874
34.
34. K. A. Meyer and P. J. Blewett, “Numerical investigation of the stability of a shock-accelerated interface between two fluids,” Phys. Fluids 15, 753 (1972).
http://dx.doi.org/10.1063/1.1693980
35.
35. M. Vetter and B. Sturtevant, “Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface,” Shock Waves 4, 247 (1995).
http://dx.doi.org/10.1007/BF01416035
36.
36. H. H. Shi, G. Zhang, K. Du, and H. X. Jia, “Experimental study on the mechanism of the Richtmyer-Meshkov instability at a gas-liquid interface,” J. Hydrodynamics 21, 423 (2009).
http://dx.doi.org/10.1016/S1001-6058(08)60166-3
37.
37. E. Leinov, G. Malamud, Y. Elbaz, L. A. Levin, G. Ben-Dor, D. Shvarts, and O. Sadot, “Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions,” J. Fluid Mech. 626, 449 (2009).
http://dx.doi.org/10.1017/S0022112009005904
38.
38. J. W. Jacobs, V. V. Krivets, V. Tsiklashvili, and O. A. Likhachev, “Experiments on the Richtmyer-Meshkov instability with an imposed, random initial perturbation,” Shock Waves 23, 407 (2013).
http://dx.doi.org/10.1007/s00193-013-0436-9
39.
39. M.-C. Renoult, P. Carles, S. Ferjani, and C. Rosenblatt, “2D Rayleigh-Taylor instability: Interfacial arc-length vs. deformation amplitude,” EPL 101, 54001 (2013).
http://dx.doi.org/10.1209/0295-5075/101/54001
40.
40. V. Kilchyk, R. Nalim, and C. Merkle, “Scaling interface length increase rates in Richtmyer–Meshkov instabilities,” J. Fluids Eng. 135, 031203 (2013).
http://dx.doi.org/10.1115/1.4023191
41.
41. K. I. Read, “Experimental investigation of turbulent mixing by Rayleigh-Taylor instability,” Physica D 12, 45 (1984).
http://dx.doi.org/10.1016/0167-2789(84)90513-X
42.
42. D. M. Snider and M. J. Andrews, “Rayleigh-Taylor and shear driven mixing with an unstable thermal stratification,” Phys. Fluids 6, 3324 (1994).
http://dx.doi.org/10.1063/1.868065
43.
43. M. B. Schneider, G. Dimonte, and B. Remington, “Large and small scale structure in Rayleigh-Taylor mixing,” Phys. Rev. Lett. 80, 3507 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3507
44.
44. G. Dimonte and M. Schneider, “Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories,” Phys. Fluids 12, 304 (2000).
http://dx.doi.org/10.1063/1.870309
45.
45. P. Ramaprabhu and M. J. Andrews, “Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers,” J. Fluid Mech. 502, 233 (2004).
http://dx.doi.org/10.1017/S0022112003007419
46.
46. K. O. Mikaelian, “Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Physica D 36, 343 (1989).
http://dx.doi.org/10.1016/0167-2789(89)90089-4
47.
47. S. W. Haan, “Weakly nonlinear hydrodynamic instabilities in inertial fusion,” Phys. Fluids B 3, 2349 (1991).
http://dx.doi.org/10.1063/1.859603
48.
48. D. S. Clark et al., “Detailed implosion modeling of deuterium-tritium layered experiments,” Phys. Plasmas 20, 056318 (2013).
http://dx.doi.org/10.1063/1.4802194
49.
49. K. O. Mikaelian, “Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings,” Phys. Rev. E 89, 053009 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.053009
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4874881
Loading
/content/aip/journal/pof2/26/5/10.1063/1.4874881
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/5/10.1063/1.4874881
2014-05-20
2016-09-28

Abstract

We apply numerical and analytic techniques to study the Boussinesq approximation in Rayleigh-Taylor and Richtmyer-Meshkov instabilities. In this approximation, one sets the Atwood number equal to zero except where it multiplies the acceleration or velocity-jump Δv. While this approximation is generally applied to low- systems, we show that it can be applied to high- systems also in certain regimes and to the “bubble” part of the instability, i.e., the penetration depth of the lighter fluid into the heavier fluid. It cannot be applied to the spike. We extend the Boussinesq approximation for incompressible fluids and show that it always overestimates the penetration depth but the error is never more than about 41%. The effect of compressibility is studied by analytic techniques in the linear regime which indicate that compressibility has the opposite effect and the Boussinesq approximation underestimates bubbles by about 14%. We also present direct numerical simulations of two compressible systems which have approximately the same Δv: a low-A air/CO system shocked at M = 1.57, and a high-A air/SF system shocked at M = 1.24. While the bubbles are approximately equal, the lower-A system has a shorter (less penetrating) spike; however, because its mushrooms are more tightly wound, the low-A system has the larger interface area.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/5/1.4874881.html;jsessionid=BP1mg2NtTfE10HYM_vZeR_x_.x-aip-live-02?itemId=/content/aip/journal/pof2/26/5/10.1063/1.4874881&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/5/10.1063/1.4874881&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/5/10.1063/1.4874881'
Right1,Right2,Right3,