Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/5/10.1063/1.4876924
1.
1. H. F. Goldstein, E. Knobloch, I. Mercader, and M. Net, “Convection in a rotating cylinder. Part 1. Linear theory for moderate Prandtl numbers,” J. Fluid Mech. 248, 583604 (1993).
http://dx.doi.org/10.1017/S0022112093000928
2.
2. J. Herrmann and F. H. Busse, “Asymptotic theory of wall-localized convection in a rotating fluid layer,” J. Fluid Mech. 255, 183194 (1993).
http://dx.doi.org/10.1017/S0022112093002447
3.
3. X. Liao, K. Zhang, and Y. Chang, “On boundary-layer convection in a rotating fluid layer,” J. Fluid Mech. 549, 375384 (2006).
http://dx.doi.org/10.1017/S0022112005008189
4.
4. K. Zhang and X. Liao, “The onset of convection in rotating circular cylinders with experimental boundary conditions,” J. Fluid Mech. 622, 6373 (2009).
http://dx.doi.org/10.1017/S002211200800517X
5.
5. X. Liao and K. Zhang, “On flow in weakly precessing cylinders: The general asymptotic solution,” J. Fluid Mech. 709, 610621 (2012).
http://dx.doi.org/10.1017/jfm.2012.355
6.
6. R. Manasseh, “Breakdown regimes of inertia waves in a precessing cylinder,” J. Fluid Mech. 243, 261296 (1992).
http://dx.doi.org/10.1017/S0022112092002726
7.
7. P. Meunier, C. Eloy, R. Lagrange, and F. Nadal, “A rotating fluid cylinder subject to weak precession,” J. Fluid Mech. 599, 405440 (2008).
http://dx.doi.org/10.1017/S0022112008000335
8.
8. W. Mouhali, T. Lehner, J. Leorat, and R. Vitry, “Evidence for a cyclonic regime in a precessing cylindrical container,” Exp. Fluids 53, 16931700 (2012).
http://dx.doi.org/10.1007/s00348-012-1385-2
9.
9. J. J. Kobine, “Azimuthal flow associated with inertial wave resonance in a precessing cylinder,” J. Fluid Mech. 319, 387406 (1996).
http://dx.doi.org/10.1017/S0022112096007380
10.
10. R. F. Gans, “On the precession of a resonant cylinder,” J. Fluid Mech. 41, 865872 (1970).
http://dx.doi.org/10.1017/S0022112070000976
11.
11. K. Chan, K. Zhang, and X. Liao, “An EBE finite element method for simulating nonlinear flows in rotating spheroidal cavities,” Int. J. Numer. Meth. Fluid 63, 395414 (2010).
http://dx.doi.org/10.1002/fld.2088
12.
12. J. Boisson, D. C. Cébron, F. Moisy, and P.-P. Cortet, “Earth rotation prevents exact solid-body rotation of fluids in the laboratory,” Europhys. Lett. 98, 59002 (2012).
http://dx.doi.org/10.1209/0295-5075/98/59002
13.
13. S. A. Triana, D. S. Zimmerman, and D. P. Lathrop, “Precessional states in a laboratory model of the Earth's core,” J. Geophys. Res. 117, B04103, doi:10.1029/2011JB009014 (2012).
http://dx.doi.org/10.1029/2011JB009014
14.
14. F. H. Busse, “Steady fluid flow in a precessing spheroidal shell,” J. Fluid Mech. 33, 739751 (1968).
http://dx.doi.org/10.1017/S0022112068001655
15.
15. R. Hollerbach, “Instabilities of the Stewartson layer. Part 1. The dependence on the sign of Ro,” J. Fluid Mech. 492, 289302 (2003).
http://dx.doi.org/10.1017/S0022112003005676
16.
16. C. Baruteau and M. Rieutord, “Inertial waves in a differentially rotating spherical shell,” J. Fluid Mech. 719, 4781 (2012).
http://dx.doi.org/10.1017/jfm.2012.605
17.
17. C. Nore, J. Leorat, J.-L. Guermond, and F. Luddens, “Nonlinear dynamo action in a precessing cylindrical container,” Phys. Rev. E 84, 016317 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.016317
18.
18. A. Tilgner, “Precession driven dynamos,” Phys. Fluids 17, 034104034106 (2005).
http://dx.doi.org/10.1063/1.1852576
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/5/10.1063/1.4876924
Loading
/content/aip/journal/pof2/26/5/10.1063/1.4876924
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/5/10.1063/1.4876924
2014-05-15
2016-12-05

Abstract

We investigate, via direct numerical simulation using a finite-element method, the precessionally driven flow of a homogeneous fluid confined in a fluid-filled circular cylinder that rotates rapidly about its symmetry axis and precesses about a different axis that is fixed in space. Our numerical simulation, after validating with the asymptotic analytical solution for a weakly precessing cylinder and with the constructed exact solution for the strongly nonlinear problem, focuses on the strongly precessing flow at asymptotically small Ekman numbers. An unusual form of the resonant precessing flow is found when the precessing rate is sufficiently large and the corresponding nonlinearity is sufficiently strong. The nonlinear precessing flow is marked by a sidewall-localized non-axisymmetric traveling wave and a wall-localized axisymmetric shear together with an overwhelmingly dominant interior rigid-body rotation whose direction and magnitude substantially reduce the angular momentum of the rotating fluid system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/5/1.4876924.html;jsessionid=ND9DtiVw3TANC11luoRkX2SR.x-aip-live-02?itemId=/content/aip/journal/pof2/26/5/10.1063/1.4876924&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/5/10.1063/1.4876924&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/5/10.1063/1.4876924'
Right1,Right2,Right3,