1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spatial evolution of supersonic streamwise vortices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/7/10.1063/1.4886097
1.
1. G. K. Batchelor, “Axial flow in trailing line vortices,” J. Fluid Mech. 20, 645658 (1964).
http://dx.doi.org/10.1017/S0022112064001446
2.
2. M. Lessen, P. J. Singh, and F. Paillet, “The stability of a trailing line vortex. Part 1. Inviscid theory,” J. Fluid Mech. 63, 753763 (1974).
http://dx.doi.org/10.1017/S0022112074002175
3.
3. S. Leibovich and K. Stewartson, “A sufficient condition for the instability of columnar vortices,” J. Fluid Mech. 126, 335356 (1983).
http://dx.doi.org/10.1017/S0022112083000191
4.
4. C. J. Heaton, “Centre modes in inviscid swirling flows and their application to the stability of the Batchelor vortex,” J. Fluid Mech. 576, 325348 (2007).
http://dx.doi.org/10.1017/S0022112006004447
5.
5. M. Lessen and F. Paillet, “The stability of a trailing line vortex. Part 2. Viscous theory,” J. Fluid Mech. 65, 769779 (1974).
http://dx.doi.org/10.1017/S0022112074001649
6.
6. M. R. Khorrami, “On the viscous modes of instability of a trailing line vortex,” J. Fluid Mech. 225, 197212 (1991).
http://dx.doi.org/10.1017/S0022112091002021
7.
7. E. W. Mayer and K. G. Powell, “Viscous and inviscid instabilities of a trailing vortex,” J. Fluid Mech. 245, 91114 (1992).
http://dx.doi.org/10.1017/S0022112092000363
8.
8. L. Parras and R. Fernandez-Feria, “Spatial stability and the onset of absolute instability of Batchelor's vortex for high swirl numbers,” J. Fluid Mech. 583, 2743 (2007).
http://dx.doi.org/10.1017/S0022112007005952
9.
9. I. Delbende, J.-M. Chomaz, and P. Huerre, “Absolute/convective instabilities in the Batchelor vortex: A numerical study of the linear impulse response,” J. Fluid Mech. 355, 229254 (1998).
http://dx.doi.org/10.1017/S0022112097007787
10.
10. C. Olendraru, A. Sellier, M. Rossi, and P. Huerre, “Inviscid instability of the Batchelor vortex: Absolute-convective transition and spatial branches,” Phys. Fluids 11, 18051820 (1999).
http://dx.doi.org/10.1063/1.870045
11.
11. X. Mao and S. J. Sherwin, “Spectra of swirling flow,” in Proceedings of the 7th IUTAM Symposium on Laminar-Turbulent Transition (Springer, 2010), pp. 247252.
12.
12. C. J. Heaton and N. Peake, “Transient growth in vortices with axial flow,” J. Fluid Mech. 587, 271301 (2007).
http://dx.doi.org/10.1017/S0022112007007434
13.
13. J. A. K. Stott and P. W. Duck, “The stability of a trailing-line vortex in compressible flow,” J. Fluid Mech. 269, 323351 (1994).
http://dx.doi.org/10.1017/S0022112094001588
14.
14. T. Hiejima, “Linear stability analysis on supersonic streamwise vortices,” Phys. Fluids 25, 114103 (2013).
http://dx.doi.org/10.1063/1.4828055
15.
15. S. Ragab and M. Sreedhar, “Numerical simulation of vortices with axial velocity deficits,” Phys. Fluids 7, 549558 (1995).
http://dx.doi.org/10.1063/1.868582
16.
16. I. Delbende and M. Rossi, “Nonlinear evolution of a swirling jet instability,” Phys. Fluids 17, 044103 (2005).
http://dx.doi.org/10.1063/1.1868412
17.
17. M. Abid, “Nonlinear mode selection in a model of trailing line vortices,” J. Fluid Mech. 605, 1945 (2008).
http://dx.doi.org/10.1017/S0022112008001377
18.
18. K. Duraisamy and S. K. Lele, “Evolution of isolated turbulent trailing vortices,” Phys. Fluids 20, 035102 (2008).
http://dx.doi.org/10.1063/1.2840200
19.
19. B. Di Pierro and M. Abid, “Energy spectra in a helical vortex breakdown,” Phys. Fluids 23, 025104 (2011).
http://dx.doi.org/10.1063/1.3553466
20.
20. M. S. Broadhurst and S. J. Sherwin, “Helical instability and breakdown of a Batchelor trailing vortex,” Progress in Industrial Mathematics at ECMI 2006, Mathematics in Industry Vol. 12 (Springer, 2008), pp. 191195.
21.
21. M. A. Herrada, M. Perez-Saborid, and A. Barrero, “Vortex breakdown in compressible flows in pipes,” Phys. Fluids 15, 22082218 (2003).
http://dx.doi.org/10.1063/1.1586272
22.
22. M. Khorrami and C. Chang, “Linear and nonlinear evolution of disturbances in supersonic streamwise vortices,” Report No. AFOSR-TR-97, 1997.
23.
23. J. W. Naughton, L. N. Cattafesta, and G. S. Settles, “An experimental study of compressible turbulent mixing enhancement in swirling jets,” J. Fluid Mech. 330, 271305 (1997).
http://dx.doi.org/10.1017/S0022112096003679
24.
24. K. S. Eckhoff and L. Storesletten, “A note on the stability of steady inviscid helical gas flow,” J. Fluid Mech. 89, 401411 (1978).
http://dx.doi.org/10.1017/S0022112078002669
25.
25. S. Leblanc and A. Le Duc, “The unstable spectrum of swirling gas flows,” J. Fluid Mech. 537, 433442 (2005).
http://dx.doi.org/10.1017/S0022112005005483
26.
26. L. Coquart, D. Sipp, and L. Jacquin, “Mixing induced by Rayleigh-Taylor instability in a vortex,” Phys. Fluids 17, 021703 (2005).
http://dx.doi.org/10.1063/1.1852580
27.
27. B. Di Pierro and M. Abid, “Rayleigh-Taylor instability in variable density swirling flows,” Eur. Phys. J. B 85, 69 (2012).
http://dx.doi.org/10.1140/epjb/e2012-20540-6
28.
28. L. Joly, J. Fontane, and P. Chassaing, “The Rayleigh-Taylor instability of two-dimensional high-density vortices,” J. Fluid Mech. 537, 415431 (2005).
http://dx.doi.org/10.1017/S0022112005005495
29.
29. D. Sipp, D. Fabre, S. Michelin, and L. Jacquin, “Stability of a vortex with a heavy core,” J. Fluid Mech. 526, 6776 (2005).
http://dx.doi.org/10.1017/S0022112004003143
30.
30. M. S. Uberoi, “Mechanisms of decay of laminar and turbulent vortices,” J. Fluid Mech. 90, 241255 (1979).
http://dx.doi.org/10.1017/S0022112079002184
31.
31. M. Sreedhar and S. Ragab, “Large eddy simulation of longitudinal stationary vortices,” Phys. Fluids 6, 25012514 (1994).
http://dx.doi.org/10.1063/1.868436
32.
32. B. Di Pierro and M. Abid, “Instabilities of variable-density swirling flows,” Phys. Rev. E 82, 046312 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.046312
33.
33. Y. Wada and M.-S. Liou, “A flux splitting scheme with high-resolution and robustness for discontinues,” AIAA Paper 94-0083, 1994.
34.
34. X. Deng and H. Zhang, “Developing high-order weighted compact nonlinear schemes,” J. Comput. Phys. 165, 2244 (2000).
http://dx.doi.org/10.1006/jcph.2000.6594
35.
35. A. Jameson, W. Schmidt, and E. Turkel, “Numerical simulation of the Euler equations by finite volume method using Runge-Kutta time stepping schemes,” AIAA Paper 81-1259, 1981.
36.
36. J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285, 6994 (1995).
http://dx.doi.org/10.1017/S0022112095000462
37.
37. O. Lucca-Negro and T. O’Doherty, “Vortex breakdown: A review,” Prog. Energy Combust. Sci. 27, 431481 (2001).
http://dx.doi.org/10.1016/S0360-1285(00)00022-8
38.
38. S. P. Govindaraju and P. G. Saffman, “Flow in a turbulent trailing vortex,” Phys. Fluids 14, 20742080 (1971).
http://dx.doi.org/10.1063/1.1693295
39.
39. L. Jacquin and C. Pantano, “On the persistence of trailing vortices,” J. Fluid Mech. 471, 159168 (2002).
http://dx.doi.org/10.1017/S0022112002002161
40.
40. M. Melander and F. Hussain, “Coupling between a coherent structure and fine-scale turbulence,” Phys. Rev. E 48, 26692689 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.2669
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/7/10.1063/1.4886097
Loading
/content/aip/journal/pof2/26/7/10.1063/1.4886097
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/7/10.1063/1.4886097
2014-07-10
2014-07-22

Abstract

In this paper, the spatial developments of high Mach number streamwise vortices have been investigated using direct numerical simulations for Mach numbers from 2.5 to 9.0. The particular streamwise vortices studied here are those with uniform stagnation temperatures and those with constant entropy. For vortices with uniform stagnation temperatures, the calculated spatial evolutions show that for small swirl parameters, a bending wave mode is excited and spiral structures of low-wavenumber modes only develop downstream. In contrast, for swirl parameters larger than a moderate amount (approximately 0.5), relaminarization occurs downstream. This study also found that the relation between the circulation and the freestream Mach number contributes to a necessary condition as to whether perturbations can grow in supersonic flows. For isentropic streamwise vortices, instability properties at high Mach numbers parallel those in low-speed flows because the evolution can give rise to high-wavenumbers within the core. The resulting entropy instability is analogous to the Rayleigh-Taylor instability and has the advantage of being insensitive to compressibility effects in supersonic flows.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/7/1.4886097.html;jsessionid=2k33tapeo0cr.x-aip-live-06?itemId=/content/aip/journal/pof2/26/7/10.1063/1.4886097&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spatial evolution of supersonic streamwise vortices
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/7/10.1063/1.4886097
10.1063/1.4886097
SEARCH_EXPAND_ITEM