1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The halting of contact lines in slender viscous films driven by gravity and surface tension gradients
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/7/10.1063/1.4886127
1.
1. J. Thomson, “On certain curious motions observable on the surfaces of wine and other alcoholic liquers,” Philos. Mag. 10(67), 330333 (1855).
http://dx.doi.org/10.1080/14786445508641982
2.
2. J. R. A. Pearson, “On convective cells induced by surface tension,” J. Fluid Mech. 4, 489500 (1958).
http://dx.doi.org/10.1017/S0022112058000616
3.
3. A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Rev. Mod. Phys. 69, 931980 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.931
4.
4. E. D. Hondros, M. McLean, and K. C. Mills, Marangoni and Interfacial Phenomena in Materials Processing: Originating from Contributions to a Discussion of the Royal Society of London (IOM Communications Limited, 1998).
5.
5. M. G. Velarde and R. K. Zeytourian, Interfacial Phenomena and the Marangoni Effect (Springer-Verlag, Wien, 2002).
6.
6. T. G. Myers, “Thin films with high surface tension,” SIAM Rev. 40(3), 441462 (1998).
http://dx.doi.org/10.1137/S003614459529284X
7.
7. H. E. Huppert, “The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal substrate,” J. Fluid Mech. 121, 4358 (1982).
http://dx.doi.org/10.1017/S0022112082001797
8.
8. D. G. Aronson, L. C. Caffarelli, and S. Kamin, “How an initially stationary interface begins to move in porous medium flow,” SIAM J. Math. Anal. 14, 639658 (1983).
http://dx.doi.org/10.1137/0514049
9.
9. A. A. Lacey, “Initial motion of the free boundary for a non-linear diffusion equation,” IMA J. Appl. Math. 31, 113119 (1983).
http://dx.doi.org/10.1093/imamat/31.2.113
10.
10. A. A. Lacey, J. R. Ockendon, and A. B. Tayler, ““Waiting time” solutions of a nonlinear diffusion equation,” SIAM J. Appl. Math. 42, 12521264 (1982).
http://dx.doi.org/10.1137/0142087
11.
11. V. A. Galaktionov, S. I. Shmarev, and J. L. Vazquez, “Regularity of interfaces in diffusion processes under the influence of strong absorption,” Arch. Ration. Mech. Anal. 149, 183212 (1999).
http://dx.doi.org/10.1007/s002050050172
12.
12. M. A. Herrero and J. L. Vazquez, “The one-dimensional nonlinear heat equation with absorption: Regularity of solutions and interfaces,” SIAM J. Math. Anal. 18, 149167 (1987).
http://dx.doi.org/10.1137/0518011
13.
13. S. Kamin and L. Veron, “Existence and uniqueness of the very singular solution of the porous medium equation with absorption,” J. d’Anal. Math. 51(1), 245258 (1988).
http://dx.doi.org/10.1007/BF02791125
14.
14. B. F. Knerr, “The behaviour of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension,” Trans. Am. Math. Soc. 249, 409424 (1979).
http://dx.doi.org/10.1090/S0002-9947-1979-0525681-7
15.
15. R. Ferreira and J. L. Vazquez, “Extinction behaviour for a fast diffusion equations with absorption,” Nonlinear Anal. 43, 943985 (2001).
http://dx.doi.org/10.1016/S0362-546X(99)00178-9
16.
16. R. E. Grundy, “The asymptotics of extinction in nonlinear diffusion reaction equations,” J. Austral. Math. Soc. 33, 414429 (1992).
http://dx.doi.org/10.1017/S0334270000007141
17.
17. J. M. Foster, C. P. Please, A. D. Fitt, and G. Richardson, “The reversing of interfaces in slow diffusion processes with strong absorption.,” SIAM J. Appl. Math. 72(1), 144162 (2012).
http://dx.doi.org/10.1137/100798089
18.
18. S. J. Chapman, P. H. Trinh, and T. P. Witelski, “Exponential asymptotics for thin film rupture,” SIAM J. Appl. Math. 73(1), 232253 (2013).
http://dx.doi.org/10.1137/120872012
19.
19. J. A. Diez and L. Kondic, “On the breakup of fluids films of finite extent,” Phys. Fluids 19, 072107 (2007).
http://dx.doi.org/10.1063/1.2749515
20.
20. D. Vaynblat, J. R. Lister, and T. P. Witelski, “Rupture of thin viscous films by van der Waals forces: Evolution and self-similarity,” Phys. Fluids 13(5), 11301140 (2001).
http://dx.doi.org/10.1063/1.1359749
21.
21. W. W. Zhang and J. R. Lister, “Similarity solutions for van der Waals rupture of a thin film on a solid substrate,” Phys. Fluids 11(9), 24542462 (1999).
http://dx.doi.org/10.1063/1.870110
22.
22. Y. M. Yatim, B. R. Duffy, S. K. Wilson, and R. Hunt, “Similarity solutions for unsteady gravity-driven slender rivulets,” Q. J. Mech. Appl. Math. 64(4), 455480 (2011).
http://dx.doi.org/10.1093/qjmam/hbr014
23.
23. Y. M. Yatim, B. R. Duffy, and S. K. Wilson, “Travelling-wave similarity solutions for a steadily translating slender dry patch in a thin fluid film,” Phys. Fluids 25, 052103 (2013).
http://dx.doi.org/10.1063/1.4803906
24.
24. K. Mikula, “Numerical solution of nonlinear diffusion with finite extinction phenomenon,” Acta Math. Univ. Comen. 64(2), 173184 (1995).
25.
25. T. Nakaki, “Numerical interfaces in nonlinear diffusion equations with finite extinction phenomena,” Hiroshima Math. J. 18, 373397 (1988).
26.
26. T. Nakaki and K. Tomoeda, “A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: Support splitting phenomena,” SIAM J. Numer. Anal. 40(3), 945964 (2002).
http://dx.doi.org/10.1137/S0036142900380303
27.
27. S. D. Howison, J. A. Moriarty, J. R. Ockendon, E. L. Terrill, and S. K. Wilson, “A mathematical model for drying paint layers,” J. Eng. Math. 32, 377394 (1997).
http://dx.doi.org/10.1023/A:1004224014291
28.
28. M. L. Gandarias, “Classical point symmetries of a porous medium equation,” J. Phys. A 29, 607633 (1996).
http://dx.doi.org/10.1088/0305-4470/29/3/014
29.
29. E. O. Tuck and W. Schwartz, “A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows,” SIAM Rev. 32(3), 453469 (1990).
http://dx.doi.org/10.1137/1032079
30.
30. L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,” SIAM J. Sci. Comput. 18, 122 (1997).
http://dx.doi.org/10.1137/S1064827594276424
31.
31.We note that in the behaviour (30), the ordering of the second, third, and fourth terms depends on the value of a.
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/7/10.1063/1.4886127
Loading
/content/aip/journal/pof2/26/7/10.1063/1.4886127
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/7/10.1063/1.4886127
2014-07-09
2014-07-23

Abstract

The evolution of thin layers of viscous fluid with compact support is considered in a case where the driving forces are gravity and surface tension gradients (which we initially take to be locally constant). In particular, we examine cases where the contact line may initially advance, but then halts at a finite time. Although this phenomenon of halting contact lines is well known, it appears that there was previously little analytical insight into how this occurs. The approach taken here is to seek self-similar solutions local to both the contact line and the halting time. The analysis is split into two parts, namely, before and after the halting time. By invoking continuity across = 0 (the halting time) it is possible to give a complete asymptotic description of both the advancing and halting processes. It is further shown that the analysis may be extended to encompass various cases where the surface tension gradient is not constant at the contact line. Finally, details are given of some numerical experiments that act as plausibility tests for the results that have been obtained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/7/1.4886127.html;jsessionid=1n6h8f4khgw1w.x-aip-live-02?itemId=/content/aip/journal/pof2/26/7/10.1063/1.4886127&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The halting of contact lines in slender viscous films driven by gravity and surface tension gradients
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/7/10.1063/1.4886127
10.1063/1.4886127
SEARCH_EXPAND_ITEM