1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Wettability model for various-sized droplets on solid surfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/pof2/26/8/10.1063/1.4893935
1.
1. P. Vlasogiannis, G. Karagiannis, P. Argyropoulos, and V. Bontozoglou, “Air-water two-phase flow and heat transfer in a plate heat exchanger,” Int. J. Multiphase Flow 28, 757772 (2002).
http://dx.doi.org/10.1016/S0301-9322(02)00010-1
2.
2. S. Lee, B. Köroğlu, and C. Park, “Experimental investigation of capillary-assisted solution wetting and heat transfer using a micro-scale, porous-layer coating on horizontal-tube, falling-film heat exchanger,” Int. J. Refrigeration 35, 11761187 (2012).
http://dx.doi.org/10.1016/j.ijrefrig.2011.11.015
3.
3. A. Serizawa, Z. Feng, and Z. KawaraTwo-phase flow in microchannels,” Exp. Therm. Fluid. Sci. 26, 703714 (2002).
http://dx.doi.org/10.1016/S0894-1777(02)00175-9
4.
4. D. Huh, C-H. Kuo, J. B. Grotberg, and S. Takayama, “Gas-liquid two-phase flow patterns in rectangular polymeric microchannels: Effect of surface wetting properties,” New J. Phys. 11, 075034 (2009).
http://dx.doi.org/10.1088/1367-2630/11/7/075034
5.
5. C. Choi, D. I. Yu, and M. Kim, “Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer,” Exp. Therm. Fluid. Sci. 35, 10861096 (2011).
http://dx.doi.org/10.1016/j.expthermflusci.2011.03.003
6.
6. B. H. Salman, H. A. Mohammed, K. M. Munisamy, and A. Sh. Kherbeet, “Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review,” Renew. Sust. Energy Rev. 28, 848880 (2013).
http://dx.doi.org/10.1016/j.rser.2013.08.012
7.
7. K. Osari, N. Unno, J. Taniguchi, K. Machinaga, T. Ohsaki, and N. Sakai, “Evaluation of filling behavior on UV nanoimprint lithography using release coating,” Microelectron. Eng. 87, 918921 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.175
8.
8. R. Agarwal, V. Singh, P. Jurney, L. Shi, S. V. Sreenivasan, and K. Roy, “Scalable imprinting of shape-specific polymeric nanocarriers using a release layer of switchable water solubility,” ACS Nano 6, 25242531 (2012).
http://dx.doi.org/10.1021/nn2049152
9.
9. M. K. Kwak, H.-E. Jeong, T.-I. Kim, H. Yoon, and K. Y. Suh, “Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion,” Soft Matter 6, 18491857 (2010).
http://dx.doi.org/10.1039/b924056j
10.
10. H. P. Srivastava, G. Arthanareeswaran, N. Anantharaman, and V. M. Starov, “Performance and properties of modified poly (vinylidene fluoride) membranes using general purpose polystyrene (GPPS) by DIPS method,” Desalination 283, 169177 (2011).
http://dx.doi.org/10.1016/j.desal.2011.02.042
11.
11. Ph. Wägli, A. Homsy, and N. F. de Rooij, “Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of mid-infrared-transparent organic solvents,” Sens. Act. B 156, 9941001 (2011).
http://dx.doi.org/10.1016/j.snb.2011.02.005
12.
12. N. Belman, K. Jin, Y. Golan, J. N. Israelachvili, and N. S. Pesika, “Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers,” Langmuir 28, 1460914617 (2012).
http://dx.doi.org/10.1021/la3026717
13.
13. T. Young, “An essay on the cohesion of fluids,” Philos. Trans. R. Soc. 95, 6587 (1805).
http://dx.doi.org/10.1098/rstl.1805.0005
14.
14. B. Widom, “Line tension and the shape of a sessile drop,” J. Phys. Chem. 99, 28032806 (1995).
http://dx.doi.org/10.1021/j100009a041
15.
15. J. Lee, K. Morita, and T. Tanaka, “Determination of macro-contact angle and line tension at high temperatures for Au/Al2O3 system at 1373 K using a micro-scale wetting method,” Mater. Trans. 44, 26592663 (2003).
http://dx.doi.org/10.2320/matertrans.44.2659
16.
16. A. I. Rusanov, A. K. Shchekin, and D. V. Tatyanenko, “The line tension and the generalized Young equation: the choice of dividing surface,” Colloids Surf. A 250, 263268 (2004).
http://dx.doi.org/10.1016/j.colsurfa.2004.04.087
17.
17. V. A. Lubarda and K. A. Talke, “Configurational forces and shape of a sessile droplet on a rotating solid substrate,” Theoret. Appl. Mech. 39, 2754 (2012).
http://dx.doi.org/10.2298/TAM1201027L
18.
18. B. Widom and A. S. Clarke, “Line tension at the wetting transition,” Physica A 168, 149159 (1990).
http://dx.doi.org/10.1016/0378-4371(90)90366-Z
19.
19. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University Press, 1984).
20.
20. L. Boruvka and A. W. Neumann, “Generalization of the classical theory of capillarity,” J. Chem. Phys. 66(12), 54645476 (1977).
http://dx.doi.org/10.1063/1.433866
21.
21. G. Wolansky and A. Marmur, “The actual contact angle on a heterogeneous rough surface in three dimensions,” Langmuir 14, 52925297 (1998).
http://dx.doi.org/10.1021/la960723p
22.
22. P. S. Swain and R. Lipowsky, “Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws,” Langmuir 14, 67726780 (1998).
http://dx.doi.org/10.1021/la980602k
23.
23. J. W. Gibbs, “On the equilibrium of heterogeneous substances,” Trans. Conn. Acad. 3, 108524 (1878).
24.
24. A. Checco, P. Guenoun, and J. Daillant, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett. 91, 186101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.186101
25.
25. D. Quéré, “Surface wetting: Model droplets,” Nat. Mater. 3, 7980 (2004).
http://dx.doi.org/10.1038/nmat1062
26.
26. L. Schimmele, M. Napiorkowski, and S. Dietrich, “Conceptual aspects of line tensions,” J. Chem. Phys. 127, 164715 (2007).
http://dx.doi.org/10.1063/1.2799990
27.
27. S. Dash and S. V. Garimella, “Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis,” Langmuir 29, 1078510795 (2013).
http://dx.doi.org/10.1021/la402784c
28.
28. H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Adv. Colloid Interface Sci. 170, 6786 (2012).
http://dx.doi.org/10.1016/j.cis.2011.12.006
29.
29. E. Bormashenko, A. Musin, and M. Zinigrad, “Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line,” Colloids Surf. A 385, 235240 (2011).
http://dx.doi.org/10.1016/j.colsurfa.2011.06.016
30.
30. N. Shahidzadeh-Bonn, S. Rafai, A. Azouni, and D. Bonn, “Evaporating droplets,” J. Fluid Mech. 549, 307313 (2006).
http://dx.doi.org/10.1017/S0022112005008190
31.
31. C. B. Monnier and M. E. R. Shanahan, “Influence of evaporation on contact angle,” Langmuir 11, 28202829 (1995).
http://dx.doi.org/10.1021/la00007a076
32.
32. M. E. R. Shanahan and K. Sefiane, “Kinetics of triple line motion during evaporation,” in Contact Angle, Wettability and Adhesion, edited by K. L. Mittal (Koninklijke Brill NV, Leiden, 2009), Vol. 6, pp. 1931.
33.
33. R. Tadmor, “Line energy, line tension and drop size,” Surf. Sci. 602, L108L111 (2008).
http://dx.doi.org/10.1016/j.susc.2008.05.018
34.
34. P. G. de Gennes, F. Brochard-Wyard, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer-Verlag, New York, 2003).
35.
35. S. Vafaei and M. Z. Podowski, “Analysis of the relationship between liquid droplet size and contact angle,” Adv. Colloid Interface Sci. 113, 133146 (2005).
http://dx.doi.org/10.1016/j.cis.2005.03.001
36.
36. Y.-S. Yu, Z. Yang, and Y.-P. Zhao, “Role of vertical component of surface tension of the droplet on the elastic deformation of PDMS membrane,” J. Adhes. Sci. Technol. 22, 687698 (2008).
37.
37. S. Das, A. Marchand, B. Andreotti, and J. H. Snoeijer, “Elastic deformation due to tangential capillary forces,” Phys. Fluids 23, 072006107200611 (2011).
http://dx.doi.org/10.1063/1.3615640
38.
38. A. Marchand, J. H. Weijs, J. H. Snoeijer, and B. Andreotti, “Why is surface tension a force parallel to the interface,” Am. J. Phys. 79(10), 9991008 (2011).
http://dx.doi.org/10.1119/1.3619866
39.
39. R. Tadmor, P. Bahadur, A. Leh, H. E. N’guessan, R. Jaini, and L. Dang, “Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate,” Phys. Rev. Lett. 103, 266101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266101
40.
40. A. T. Paxson and K. K. Varanasi, “Self-similarity of contact line depinning from textured surfaces,” Nat. Commun. 4, 1492 (2013).
http://dx.doi.org/10.1038/ncomms2482
41.
41. F. Brochard-Wyart, H. Hervet, C. Redon, and F. Rondelez, “Spreading of “heavy” droplets I. Theory,” J. Colloid Interface Sci. 142, 518527 (1991).
http://dx.doi.org/10.1016/0021-9797(91)90082-J
42.
42. V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 1070510713 (2011).
http://dx.doi.org/10.1021/la202077w
43.
43. D. Li and A. W. Neumann, “Determination of line tension from the droplet size dependence of contact angles,” Colloids Surf. 43, 195206 (1990).
http://dx.doi.org/10.1016/0166-6622(90)80288-F
44.
44. J. Drelich, J. D. Miller, and J. Hupka, “The effect of drop size on contact angle over a wide range of drop volumes,” J. Colloid Interface Sci. 155, 379385 (1993).
http://dx.doi.org/10.1006/jcis.1993.1050
45.
45. D. Duncan, D. Li, J. Gaydos, and A. W. Neumann, “Correlation of line tension and solid-liquid interfacial tension from the measurement of drop size dependence of contact angles,” J. Colloid Interface Sci. 169, 256261 (1995).
http://dx.doi.org/10.1006/jcis.1995.1032
46.
46. A. Marmur, “Line tension and the intrinsic contact angle in solid-liquid-fluid systems,” J. Colloid Interface Sci. 186, 462466 (1997).
http://dx.doi.org/10.1006/jcis.1996.4666
47.
47. P. Cao, K. Xu, J. O. Varghese, and J. R. Heath, “The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions,” Nano Lett. 11, 55815586 (2011).
http://dx.doi.org/10.1021/nl2036639
48.
48. P. K. Yadav, F. McKavanagh, P. D. Maguire, and P. Lemoine, “Adsorption of bovine serum albumin on amorphous carbon surfaces studied with dip pen nanolithography,” Appl. Surf. Sci. 258, 361369 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.08.068
49.
49. A. Amirfazli, A. Keshavarz, L. Zhang, and A. W. NeumannDetermination of line tension for systems near wetting,” J. Colloid Interface Sci. 265, 152160 (2003).
http://dx.doi.org/10.1016/S0021-9797(03)00521-6
50.
50. K. W. Stöckelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323333 (1999).
http://dx.doi.org/10.1016/S0927-7757(99)00084-9
51.
51. R. Wang, M. Takeda, and M. Kido, “Micro pure water wettability evaluation with an AC no-contact mode of atomic force microscope,” Mater. Lett. 54, 140144 (2002).
http://dx.doi.org/10.1016/S0167-577X(01)00552-3
52.
52. C. Clanet, C. Béguin, D. Richard, and D. Quéré, “Maximal deformation of an impacting drop,” J. Fluid Mech. 517, 199208 (2004).
http://dx.doi.org/10.1017/S0022112004000904
53.
53. Y. Gu, “Drop size dependence of contact angles of oil drops on a solid surface in water,” Colloids Surf., A 181, 215224 (2001).
http://dx.doi.org/10.1016/S0927-7757(00)00804-9
54.
54. R. J. Good and M. N. Koo, “The effect of drop size on contact angle,” J. Colloid Interface Sci. 71, 283292 (1979).
http://dx.doi.org/10.1016/0021-9797(79)90239-X
55.
55. D. Bonn, J. Eggers, J. Indekew, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81(2), 739805 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.739
56.
56. C. A. Ward and J. Wu, “Effect of contact line curvature on solid-fluid surface tensions without line tension,” Phys. Rev. Lett. 100, 25610312561034 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.256103
57.
57. K. Sefiane, “Thoughts on some outstanding issues in the physics of equilibrium wetting and conceptual understanding of contact lines,” Eur. Phys. J. Special Topics 197, 151157 (2011).
http://dx.doi.org/10.1140/epjst/e2011-01450-y
58.
58. H. Ghasemi and C. A. Ward, “Sessile-water-droplet contact angle dependence on adsorption at the solid-liquid interface,” J. Phys. Chem. C 114, 50885100 (2010).
http://dx.doi.org/10.1021/jp911259n
59.
59. D. W. Green and R. H. Perry, Perry's Chemical Engineers’ Handbook, 8th ed. (McGraw-Hill, New York, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/8/10.1063/1.4893935
Loading
/content/aip/journal/pof2/26/8/10.1063/1.4893935
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/8/10.1063/1.4893935
2014-08-28
2014-09-20

Abstract

The wetting phenomenon is crucial for the formation of stable liquid films on solid surfaces. The wettability of a liquid on a solid surface is characterized by the Young equation, which represents an equilibrium condition of a droplet at the three phase contact line. In general, the surface force in the vertical direction on a solid surface is ignored because of the resistance of the solid surface. However, considering the adhesion energy of the droplet rather than the force balance at the contact line, the vertical component of the surface force can be expected to be an important factor during wetting. Based on this concept, an analytical model is developed herein by considering the energy balance including adhesion forces acting not only in the horizontal but also in the vertical direction, in addition to the effect of gravity on the droplet. The validity of the developed model is then evaluated by experimental observation of the wetting phenomena of droplets on low- and high-surface-energy solids. Existing data are also used for evaluation of our model. The developed model describes the wetting phenomena of droplets with sizes ranging from nano- to millimeters under all experimental conditions and exhibits universality. In addition, on the basis of our model, the line tension is discussed. The results indicate that the line tension approach may be considered as a method to explain wetting phenomena by considering gravitational potential and other macroscopic parameters as a single parameter (i.e., line tension).

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/8/1.4893935.html;jsessionid=g4q5j581he2ml.x-aip-live-02?itemId=/content/aip/journal/pof2/26/8/10.1063/1.4893935&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Wettability model for various-sized droplets on solid surfaces
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/8/10.1063/1.4893935
10.1063/1.4893935
SEARCH_EXPAND_ITEM