Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/26/9/10.1063/1.4896267
1.
1. G. Falkovich, A. Fouxon, and M. Stepanov, “Acceleration of rain initiation by cloud turbulence,” Nature 419, 151154 (2002).
http://dx.doi.org/10.1038/nature00983
2.
2. E. Bodenschatz, S. Malinowski, R. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?Science 327, 970971 (2010).
http://dx.doi.org/10.1126/science.1185138
3.
3. S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flow,” Annu. Rev. Fluid Mech. 42, 111133 (2010).
http://dx.doi.org/10.1146/annurev.fluid.010908.165243
4.
4. E. Balkovsky, G. Falkovich, and A. Fouxon, “Intermittent distribution of inertial particles in turbulent flows,” Phys. Rev. Lett. 86, 27902793 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2790
5.
5. F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Annu. Rev. Fluid Mech. 41, 375404 (2009).
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
6.
6. E. Calzavarini, M. Kerscher, D. Lohse, and F. Toschi, “Dimensionality and morphology of particle and bubble clusters in turbulent flow,” J. Fluid Mech. 607, 1324 (2008).
http://dx.doi.org/10.1017/S0022112008001936
7.
7. E. Calzavarini, T. van den Berg, F. Toschi, and D. Lohse, “Quantifying microbubble clustering in turbulent flow from single-point measurements,” Phys. Fluids 20, 040702 (2008).
http://dx.doi.org/10.1063/1.2911036
8.
8. K. Squires and J. Eaton, “Preferential concentration of particles by turbulence,” Phys. Fluids A 3, 11691178 (1991).
http://dx.doi.org/10.1063/1.858045
9.
9. J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi, “Heavy particle concentration in turbulence at dissipative and inertial scales,” Phys. Rev. Lett. 98, 084502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.084502
10.
10. E. Saw, R. Shaw, S. Ayyalasomayajula, P. Chuang, and A. Gylfason, “Inertial clustering of particles in high-Reynolds-number turbulence,” Phys. Rev. Lett. 100, 214501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.214501
11.
11. I. Fouxon, “Distribution of particles and bubbles in turbulence at a small Stokes number,” Phys. Rev. Lett. 108, 134502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.134502
12.
12. S. Goto and J. Vassilicos, “Sweep-stick mechanism of heavy particle clustering in fluid turbulence,” Phys. Rev. Lett. 100, 054503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.054503
13.
13. S. Ayyalasomayajula, A. Gylfason, L. R. Collins, E. Bodenschatz, and Z. Warhaft, “Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence,” Phys. Rev. Lett. 97, 144507 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.144507
14.
14. J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi, “Acceleration statistics of heavy particles in turbulence,” J. Fluid Mech. 550, 349358 (2006).
http://dx.doi.org/10.1017/S002211200500844X
15.
15. R. Volk, E. Calzavarini, G. Verhille, D. Lohse, N. Mordant, J. Pinton, and F. Toschi, “Acceleration of heavy and light particles in turbulence: Comparison between experiments and direct numerical simulations,” Physica D 237, 20842089 (2008).
http://dx.doi.org/10.1016/j.physd.2008.01.016
16.
16. J. Salazar and L. Collins, “Inertial particle acceleration statistics in turbulence: Effects of filtering, biased sampling, and flow topology,” Phys. Fluids 24, 083302 (2012).
http://dx.doi.org/10.1063/1.4744993
17.
17. J. Martinez Mercado, V. Prakash, Y. Tagawa, C. Sun, D. Lohse, and I. C. T. Res, “Lagrangian statistics of light particles in turbulence,” Phys. Fluids 24, 055106 (2012).
http://dx.doi.org/10.1063/1.4719148
18.
18. S. Lee, S. Lele, and P. Moin, “Direct numerical simulation of isotropic turbulence interacting with a weak shock wave,” J. Fluid Mech. 251, 533562 (1993).
http://dx.doi.org/10.1017/S0022112093003519
19.
19. S. Jamme, J. Cazalbou, F. Torres, and P. Chassaing, “Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence,” Flow, Turbul. Combust. 68, 227268 (2002).
http://dx.doi.org/10.1023/A:1021197225166
20.
20. J. Larsson and S. K. Lele, “Direct numerical simulation of canonical shock/turbulence interaction,” Phys. Fluids 21, 126101 (2009).
http://dx.doi.org/10.1063/1.3275856
21.
21. J. Larsson, I. Bermejo-Moreno, and S. Lele, “Reynolds- and Mach-number effects in canonical shock-turbulence interaction,” J. Fluid Mech. 717, 293321 (2013).
http://dx.doi.org/10.1017/jfm.2012.573
22.
22. S. Lee, S. Lele, and P. Moin, “Eddy shocklets in decaying compressible turbulence,” Phys. Fluids A 3, 657664 (1991).
http://dx.doi.org/10.1063/1.858071
23.
23. R. Samtaney, D. Pullin, and B. Kosović, “Direct numerical simulation of decaying compressible turbulence and shocklet statistics,” Phys. Fluids 13, 14151430 (2001).
http://dx.doi.org/10.1063/1.1355682
24.
24. S. Pirozzoli and F. Grasso, “Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures,” Phys. Fluids 16, 43864407 (2004).
http://dx.doi.org/10.1063/1.1804553
25.
25. E. Falgarone and J. Puget, “The intermittency of turbulence in interstellar clouds: implications for the gas kinetic temperature and decoupling of heavy-particles from the gas motions,” Astron. Astrophys. 293, 840852 (1995).
26.
26. J. Scalo and B. Elmegreen, “Interstellar turbulence II: Implications and effects,” Annu. Rev. Astron. Astrophys. 42, 275316 (2004).
http://dx.doi.org/10.1146/annurev.astro.42.120403.143327
27.
27. L. Pan, P. Padoan, J. Scalo, A. Kritsuk, and M. Norman, “Turbulent clustering of protoplanetary dust and planetesimal formation,” Astrophys. J. 740, 6 (2011).
http://dx.doi.org/10.1088/0004-637X/740/1/6
28.
28. M. Samimy and S. K. Lele, “Motion of particles with inertia in a compressible free shear layer,” Phys. Fluids A 3, 19151923 (1991).
http://dx.doi.org/10.1063/1.857921
29.
29. M. Parmar, A. Haselbacher, and S. Balachandar, “Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow,” Phys. Rev. Lett. 106, 084501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.084501
30.
30. M. Parmar, A. Haselbacher, and S. Balachandar, “Equation of motion for a sphere in non-uniform compressible flows,” J. Fluid Mech. 699, 352375 (2012).
http://dx.doi.org/10.1017/jfm.2012.109
31.
31. M. Parmar, S. Balachandar, and A. Haselbacher, “Equation of motion for a drop or bubble in viscous compressible flows,” Phys. Fluids 24, 056103 (2012).
http://dx.doi.org/10.1063/1.4719696
32.
32. M. Parmar, A. Haselbacher, and S. Balachandar, “Modeling of the unsteady force for shock-particle interaction,” Shock Waves 19, 317329 (2009).
http://dx.doi.org/10.1007/s00193-009-0206-x
33.
33. J. Wang, L. Wang, Z. Xiao, Y. Shi, and S. Chen, “A hybrid numerical simulation of isotropic compressible turbulence,” J. Comput. Phys. 229, 52575279 (2010).
http://dx.doi.org/10.1016/j.jcp.2010.03.042
34.
34. Y. Yang, J. Wang, Y. Shi, Z. Xiao, X. He, and S. Chen, “Acceleration of passive tracers in compressible turbulent flow,” Phys. Rev. Lett. 110, 064503 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.064503
35.
35. J. Wang, Y. Shi, L. Wang, Z. Xiao, X. He, and S. Chen, “Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence,” Phys. Fluids 23, 125103 (2011).
http://dx.doi.org/10.1063/1.3664124
http://aip.metastore.ingenta.com/content/aip/journal/pof2/26/9/10.1063/1.4896267
Loading
/content/aip/journal/pof2/26/9/10.1063/1.4896267
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/26/9/10.1063/1.4896267
2014-09-23
2016-09-28

Abstract

Numerical simulations are conducted to investigate the dynamics of inertial particles being passively convected in a compressible homogeneous turbulence. Heavy and light particles exhibit very different types of non-uniform distributions due to their different behaviors near shocklets. Because of the relaxation nature of the Stokes drag, the heavy particles are decelerated mainly at downstream adjacent to the shocklets and form high-number-density clouds. The light particles are strongly decelerated by the added-mass effect and stay in the compression region for a relatively long time period. They cluster into thin filament structures near shocklets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/26/9/1.4896267.html;jsessionid=dUAgxOUUbB40quBsCkUExBw9.x-aip-live-06?itemId=/content/aip/journal/pof2/26/9/10.1063/1.4896267&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/26/9/10.1063/1.4896267&pageURL=http://scitation.aip.org/content/aip/journal/pof2/26/9/10.1063/1.4896267'
Right1,Right2,Right3,