Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368373 (2006).
2.M. A. Sleigh, J. R. Blake, and N. Liron, “The propulsion of mucus by cilia,” Am. Rev. Respir. Dis. 137, 726741 (1988).
3.R. E. Goldstein, I. Tuval, and J.-W. van de Meent, “Microfluidics of cytoplasmic streaming and its implications for intracellular transport,” Proc. Natl. Acad. Sci. U. S. A. 105, 36633667 (2008).
4.C. M. Ho and Y. C. Tai, “Micro-electro-mechanical-systems (MEMS) and fluid flows,” Annu. Rev. Fluid Mech. 30, 579612 (1998).
5.D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4, 261286 (2002).
6.H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech. 36, 381411 (2004).
7.T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 9771026 (2005).
8.B. J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge University Press, Cambridge, UK, 2009).
9.C. Brennen and H. Winnet, “Fluid mechanics of propulsion by cilia and flagella,” Annu. Rev. Fluid Mech. 9, 339398 (1977).
10.S. Gueron and K. Levit-Gurevich, “Energetic considerations of ciliary beating and the advantage of metachronal coordination,” Proc. Natl. Acad. Sci. U. S. A. 96, 1224012245 (1999).
11.S. A. Halbert, P. Y. Tam, and R. J. Blandau, “Egg transport in the rabbit oviduct: The roles of cilia and muscle,” Science 191, 10521053 (1976).
12.N. Coq, A. Bricard, F.-D. Delapierre, L. Malaquin, O. du Roure, M. Fermigier, and D. Bartolo, “Collective beating of artificial microcilia,” Phys. Rev. Lett. 107, 014501 (2011).
13.N. Darnton, L. Turner, K. Breuer, and H. C. Berg, “Moving fluid with bacterial carpets,” Biophys. J. 86, 18631870 (2004).
14.Y. W. Kim and R. R. Netz, “Pumping fluids with periodically beating grafted elastic filaments,” Phys. Rev. Lett. 96, 158101 (2006).
15.J. L. Anderson, “Colloid transport by interfacial forces,” Annu. Rev. Fluid Mech. 21, 6199 (1989).
16.W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, UK, 1989).
17.S. Michelin, T. D. Montenegro-Johnson, G. De Canio, N. Lobato-Dauzier, and E. Lauga, “Geometric pumping in autophoretic channels,” Soft Matter 11, 58045811 (2015).
18.J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice Hall, Englewood Cliffs, NJ, 1965).
19.S. Kim and S. J. Karrila, Microhydrodynamics (Dover Publications, Inc., New York, 2005).
20.L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University Press, New York, 2007).
21.H. A. Stone and A. D. T. Samuel, “Propulsion of microorganisms by surface distortions,” Phys. Rev. Lett. 77, 41024104 (1996).
22.W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: Autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126, 1342413431 (2004).
23.J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, “Self-motile colloidal particles: From directed propulsion to random walk,” Phys. Rev. Lett. 99, 048102 (2007).
24.R. Golestanian, T. B. Liverpool, and A. Ajdari, “Designing phoretic micro- and nano-swimmers,” New J. Phys. 9, 126 (2007).
25.G. J. Elfring, “A note on the reciprocal theorem for the swimming of simple bodies,” Phys. Fluids 27, 023101 (2015).
26.D. Papavassiliou and G. P. Alexander, “The many-body reciprocal theorem and swimmer hydrodynamics,” Europhys. Lett. 110, 44001 (2015).
27.H. Masoud and H. A. Stone, “A reciprocal theorem for Marangoni propulsion,” J. Fluid Mech. 741, R4 (2014).

Data & Media loading...


Article metrics loading...



In a variety of physical situations, a bulk viscous flow is induced by a distribution of surface velocities, for example, in diffusiophoresis (as a result of chemical gradients) and above carpets of cilia (as a result of biological activity). When such boundary-driven flows are used to pump fluids, the primary quantity of interest is the induced flow rate. In this letter, we propose a method, based on the reciprocal theorem of Stokes flows, to compute the net flow rate for arbitrary flow distribution and periodic pump geometry using solely stress information from a dual Poiseuille-like problem. After deriving the general result, we apply it to straight channels of triangular, elliptic, and rectangular geometries and quantify the relationship between bulk motion and surface forcing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd