Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/12/10.1063/1.4935232
1.
1.A.-M. Cazabat and G. Guéna, “Evaporation of macroscopic sessile droplets,” Soft Matter 6, 25912612 (2010).
http://dx.doi.org/10.1039/b924477h
2.
2.H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Adv. Colloid Interface Sci. 170, 6786 (2012).
http://dx.doi.org/10.1016/j.cis.2011.12.006
3.
3.R. G. Larson, “Transport and deposition patterns in drying sessile droplets,” AIChE J. 60, 15381571 (2014).
http://dx.doi.org/10.1002/aic.14338
4.
4.D. Lohse and X. Zhang, “Surface nanobubbles and nanodroplets,” Rev. Mod. Phys. 87, 9811035 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.981
5.
5.R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci. 61, 336350 (1977).
http://dx.doi.org/10.1016/0021-9797(77)90396-4
6.
6.C. Bourgès-Monnier and M. E. R. Shanahan, “Influence of evaporation on contact angle,” Langmuir 11, 28202829 (1995).
http://dx.doi.org/10.1021/la00007a076
7.
7.K. Uno, K. Hayashi, T. Hayashi, K. Ito, and H. Kitano, “Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces,” Colloid Polym. Sci. 276, 810815 (1998).
http://dx.doi.org/10.1007/s003960050314
8.
8.J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49, 35613567 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.049
9.
9.G. Li, S. M. Flores, C. Vavilala, M. Schmittel, and K. Graf, “Evaporation dynamics of microdroplets on self-assembled monolayers and dialkyl disulfides,” Langmuir 25, 1343813447 (2009).
http://dx.doi.org/10.1021/la901422v
10.
10.H. Song, Y. Lee, S. Jin, H.-Y. Kim, and J. Y. Yoo, “Prediction of sessile drop evaporation considering surface wettability,” Microelectron. Eng. 88, 32493255 (2011).
http://dx.doi.org/10.1016/j.mee.2011.07.015
11.
11.T. A. H. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci. 69, 522529 (2012).
http://dx.doi.org/10.1016/j.ces.2011.11.009
12.
12.T. Lim, J. Yang, S. Lee, J. Chung, and D. Hong, “Deposit pattern of inkjet printed pico-liter droplet,” Int. J. Precis. Eng. Manuf. 13, 827833 (2012).
http://dx.doi.org/10.1007/s12541-012-0108-1
13.
13.Y.-S. Yu, Z. Wang, and Y.-P. Zhao, “Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces,” J. Colloid Interface Sci. 365, 254259 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.09.007
14.
14.S. Dash and S. V. Garimella, “Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis,” Langmuir 29, 1078510795 (2013).
http://dx.doi.org/10.1021/la402784c
15.
15.T. A. H. Nguyen and A. V. Nguyen, “Increased evaporation kinetics of sessile droplets by using nanoparticles,” Langmuir 28, 1672516728 (2012).
http://dx.doi.org/10.1021/la303293w
16.
16.J. M. Stauber, S. K. Wilson, B. R. Duffy, and K. Sefiane, “On the lifetimes of evaporating droplets,” J. Fluid Mech. 744, R2 (2014).
http://dx.doi.org/10.1017/jfm.2014.94
17.
17.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827829 (1997).
http://dx.doi.org/10.1038/39827
18.
18.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62, 756765 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
19.
19.H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: Constant contact angle mode,” Langmuir 18, 26362641 (2002).
http://dx.doi.org/10.1021/la011470p
20.
20.H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B 106, 13341344 (2002).
http://dx.doi.org/10.1021/jp0118322
21.
21.Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Phys. Rev. E 71, 036313 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036313
22.
22.G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” J. Fluid Mech. 623, 329351 (2009).
http://dx.doi.org/10.1017/S0022112008005004
23.
23.G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “Evaporation of a thin droplet on a thin substrate with a high thermal resistance,” Phys. Fluids 21, 052101 (2009).
http://dx.doi.org/10.1063/1.3121214
24.
24.H. Masoud and J. D. Felske, “Analytical solution for inviscid flow inside an evaporating sessile drop,” Phys. Rev. E 79, 016301 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016301
25.
25.K. Sefiane, S. K. Wilson, S. David, G. J. Dunn, and B. R. Duffy, “On the effect of the atmosphere on the evaporation of sessile droplets of water,” Phys. Fluids 21, 062101 (2009).
http://dx.doi.org/10.1063/1.3131062
26.
26.J. Eggers and L. M. Pismen, “Nonlocal description of evaporating drops,” Phys. Fluids 22, 112101 (2010).
http://dx.doi.org/10.1063/1.3491133
27.
27.H. Gelderblom, Á. G. Marín, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Phys. Rev. E 83, 026306 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.026306
28.
28.H. Gelderblom, O. Bloemen, and J. H. Snoeijer, “Stokes flow near the contact line of an evaporating drop,” J. Fluid Mech. 709, 6984 (2012).
http://dx.doi.org/10.1017/jfm.2012.321
29.
29.T. A. H. Nguyen and A. V. Nguyen, “On the lifetime of evaporating sessile droplets,” Langmuir 28, 19241930 (2012).
http://dx.doi.org/10.1021/la2036955
30.
30.B. Sobac and D. Brutin, “Thermal effects of the substrate on water droplet evaporation,” Phys. Rev. E 86, 021602 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.021602
31.
31.E. L. Talbot, A. Berson, P. S. Brown, and C. D. Bain, “Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities,” Phys. Rev. E 85, 061604 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.061604
32.
32.S. Dash and S. V. Garimella, “Droplet evaporation on heated hydrophobic and superhydrophobic surfaces,” Phys. Rev. E 89, 042402 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.042402
33.
33.T. A. H. Nguyen and A. V. Nguyen, “Transient volume of evaporating sessile droplets: 2/3, 1/1, or another power law?,” Langmuir 30, 65446547 (2014).
http://dx.doi.org/10.1021/la4047287
34.
34.S. Semenov, A. Trybala, R. G. Rubio, N. Kovalchuk, V. (M.) Starov, and M. G. Velarde, “Simultaneous spreading and evaporation: Recent developments,” Adv. Colloid Interface Sci. 206, 382398 (2014).
http://dx.doi.org/10.1016/j.cis.2013.08.006
35.
35.J. M. Stauber, S. K. Wilson, B. R. Duffy, and K. Sefiane, “The evaporation of droplets on strongly hydrophobic substrates,” Langmuir 31, 36533660 (2015).
http://dx.doi.org/10.1021/acs.langmuir.5b00286
36.
36.N. N. Lebedev, Special Functions and Their Applications (Prentice Hall, Inc., 1965).
37.
37.M. E. R. Shanahan, K. Sefiane, and J. R. Moffat, “Dependence of volatile droplet lifetime on the hydrophobicity of the substrate,” Langmuir 27, 45724577 (2011).
http://dx.doi.org/10.1021/la200437s
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/12/10.1063/1.4935232
Loading
/content/aip/journal/pof2/27/12/10.1063/1.4935232
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/12/10.1063/1.4935232
2015-12-02
2016-12-10

Abstract

A physically credible relationship based on the unbalanced Young force between the initial and receding contact angles of an evaporating droplet is proposed and used to give a complete description of the lifetime of a droplet evaporating in an idealised stick-slide mode. In particular, it is shown that the dependence of the lifetime on the initial contact angle is qualitatively different from that when the relationship between the initial and receding contact angles is not taken into account.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/12/1.4935232.html;jsessionid=uAC9xDC1BPXZCxBfDabI0kpf.x-aip-live-02?itemId=/content/aip/journal/pof2/27/12/10.1063/1.4935232&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/12/10.1063/1.4935232&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/12/10.1063/1.4935232'
Right1,Right2,Right3,