Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A.-M. Cazabat and G. Guéna, “Evaporation of macroscopic sessile droplets,” Soft Matter 6, 25912612 (2010).
2.H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Adv. Colloid Interface Sci. 170, 6786 (2012).
3.R. G. Larson, “Transport and deposition patterns in drying sessile droplets,” AIChE J. 60, 15381571 (2014).
4.D. Lohse and X. Zhang, “Surface nanobubbles and nanodroplets,” Rev. Mod. Phys. 87, 9811035 (2015).
5.R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci. 61, 336350 (1977).
6.C. Bourgès-Monnier and M. E. R. Shanahan, “Influence of evaporation on contact angle,” Langmuir 11, 28202829 (1995).
7.K. Uno, K. Hayashi, T. Hayashi, K. Ito, and H. Kitano, “Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces,” Colloid Polym. Sci. 276, 810815 (1998).
8.J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49, 35613567 (2006).
9.G. Li, S. M. Flores, C. Vavilala, M. Schmittel, and K. Graf, “Evaporation dynamics of microdroplets on self-assembled monolayers and dialkyl disulfides,” Langmuir 25, 1343813447 (2009).
10.H. Song, Y. Lee, S. Jin, H.-Y. Kim, and J. Y. Yoo, “Prediction of sessile drop evaporation considering surface wettability,” Microelectron. Eng. 88, 32493255 (2011).
11.T. A. H. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci. 69, 522529 (2012).
12.T. Lim, J. Yang, S. Lee, J. Chung, and D. Hong, “Deposit pattern of inkjet printed pico-liter droplet,” Int. J. Precis. Eng. Manuf. 13, 827833 (2012).
13.Y.-S. Yu, Z. Wang, and Y.-P. Zhao, “Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces,” J. Colloid Interface Sci. 365, 254259 (2012).
14.S. Dash and S. V. Garimella, “Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis,” Langmuir 29, 1078510795 (2013).
15.T. A. H. Nguyen and A. V. Nguyen, “Increased evaporation kinetics of sessile droplets by using nanoparticles,” Langmuir 28, 1672516728 (2012).
16.J. M. Stauber, S. K. Wilson, B. R. Duffy, and K. Sefiane, “On the lifetimes of evaporating droplets,” J. Fluid Mech. 744, R2 (2014).
17.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature 389, 827829 (1997).
18.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62, 756765 (2000).
19.H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: Constant contact angle mode,” Langmuir 18, 26362641 (2002).
20.H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B 106, 13341344 (2002).
21.Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Phys. Rev. E 71, 036313 (2005).
22.G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” J. Fluid Mech. 623, 329351 (2009).
23.G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “Evaporation of a thin droplet on a thin substrate with a high thermal resistance,” Phys. Fluids 21, 052101 (2009).
24.H. Masoud and J. D. Felske, “Analytical solution for inviscid flow inside an evaporating sessile drop,” Phys. Rev. E 79, 016301 (2009).
25.K. Sefiane, S. K. Wilson, S. David, G. J. Dunn, and B. R. Duffy, “On the effect of the atmosphere on the evaporation of sessile droplets of water,” Phys. Fluids 21, 062101 (2009).
26.J. Eggers and L. M. Pismen, “Nonlocal description of evaporating drops,” Phys. Fluids 22, 112101 (2010).
27.H. Gelderblom, Á. G. Marín, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Phys. Rev. E 83, 026306 (2011).
28.H. Gelderblom, O. Bloemen, and J. H. Snoeijer, “Stokes flow near the contact line of an evaporating drop,” J. Fluid Mech. 709, 6984 (2012).
29.T. A. H. Nguyen and A. V. Nguyen, “On the lifetime of evaporating sessile droplets,” Langmuir 28, 19241930 (2012).
30.B. Sobac and D. Brutin, “Thermal effects of the substrate on water droplet evaporation,” Phys. Rev. E 86, 021602 (2012).
31.E. L. Talbot, A. Berson, P. S. Brown, and C. D. Bain, “Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities,” Phys. Rev. E 85, 061604 (2012).
32.S. Dash and S. V. Garimella, “Droplet evaporation on heated hydrophobic and superhydrophobic surfaces,” Phys. Rev. E 89, 042402 (2014).
33.T. A. H. Nguyen and A. V. Nguyen, “Transient volume of evaporating sessile droplets: 2/3, 1/1, or another power law?,” Langmuir 30, 65446547 (2014).
34.S. Semenov, A. Trybala, R. G. Rubio, N. Kovalchuk, V. (M.) Starov, and M. G. Velarde, “Simultaneous spreading and evaporation: Recent developments,” Adv. Colloid Interface Sci. 206, 382398 (2014).
35.J. M. Stauber, S. K. Wilson, B. R. Duffy, and K. Sefiane, “The evaporation of droplets on strongly hydrophobic substrates,” Langmuir 31, 36533660 (2015).
36.N. N. Lebedev, Special Functions and Their Applications (Prentice Hall, Inc., 1965).
37.M. E. R. Shanahan, K. Sefiane, and J. R. Moffat, “Dependence of volatile droplet lifetime on the hydrophobicity of the substrate,” Langmuir 27, 45724577 (2011).

Data & Media loading...


Article metrics loading...



A physically credible relationship based on the unbalanced Young force between the initial and receding contact angles of an evaporating droplet is proposed and used to give a complete description of the lifetime of a droplet evaporating in an idealised stick-slide mode. In particular, it is shown that the dependence of the lifetime on the initial contact angle is qualitatively different from that when the relationship between the initial and receding contact angles is not taken into account.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd