Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. Ashgriz and J. Y. Poo, “Coalescence and separation in binary collisions of liquid drops,” J. Fluid Mech. 221, 183 (1990).
2.M. G. Hajra, K. Mehta, and G. G. Chase, “Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media,” Sep. Purif. Technol. 30, 79 (2003).
3.Z. Hu and R. C. Srivastava, “Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations,” J. Atmos. Sci. 52, 1761 (1995).<1761:EORSDB>2.0.CO;2
4.H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Springer, 2010), Vol. 18.
5.R. W. Hopper, “Coalescence of two equal cylinders: Exact results for creeping viscous plane flow driven by capillarity,” J. Am. Ceram. Soc. 67, C262 (1984).
6.J. Eggers, J. R. Lister, and H. A. Stone, “Coalescence of liquid drops,” J. Fluid Mech. 401, 293 (1999).
7.L. Duchemin, J. Eggers, and C. Josserand, “Inviscid coalescence of drops,” J. Fluid Mech. 487, 167 (2003).
8.D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95, 164503 (2005).
9.W. Yao, H. J. Maris, P. Pennington, and G. M. Seidel, “Coalescence of viscous liquid drops,” Phys. Rev. E 71, 016309 (2005).
10.T. Lee and P. F. Fischer, “Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases,” Phys. Rev. E 74, 046709 (2006).
11.J. D. Paulsen, J. C. Burton, and S. R. Nagel, “Viscous to inertial crossover in liquid drop coalescence,” Phys. Rev. Lett. 106, 114501 (2011).
12.J. D. Paulsen, J. C. Burton, S. R. Nagel, S. Appathurai, M. T. Harris, and O. A. Basaran, “The inexorable resistance of inertia determines the initial regime of drop coalescence,” Proc. Natl. Acad. Sci. U. S. A. 109, 6857 (2012).
13.J. E. Sprittles and Y. D. Shikhmurzaev, “Coalescence of liquid drops: Different models versus experiment,” Phys. Fluids 24, 122105 (2012).
14.L. Baroudi, M. Kawaji, and T. Lee, “Effects of initial conditions on the simulation of inertial coalescence of two drops,” Comput. Math. Appl. 67, 282 (2014).
15.J. E. Sprittles and Y. D. Shikhmurzaev, “A parametric study of the coalescence of liquid drops in a viscous gas,” J. Fluid Mech. 753, 279 (2014).
16.T. Lee and C.-L. Lin, “A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio,” J. Comput. Phys. 206, 16 (2005).
17.T. Lee and C.-L. Lin, “Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change,” Phys. Rev. E 67, 056703 (2003).
18.J. C. Burton and P. Taborek, “Role of dimensionality and axisymmetry in fluid pinch-off and coalescence,” Phys. Rev. Lett. 98, 224502 (2007).
19.P. Yue, J. J. Feng, C. Liu, and J. Shen, “Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids,” J. Non-Newtonian Fluid Mech. 129, 163 (2005).
20.H. J. Butt and M. Kappl, “Normal capillary forces,” Adv. Colloid Interface Sci. 146, 48 (2009).
21.M. M. Kohonen, N. Maeda, and H. K. Christenson, “Kinetics of capillary condensation in a nanoscale pore,” Phys. Rev. Lett. 82, 4667 (1999).
22.N. Chen, T. Kuhl, R. Tadmor, Q. Lin, and J. Israelachvili, “Large deformations during the coalescence of fluid interfaces,” Phys. Rev. Lett. 92, 024501 (2004).
23.M. Gross, I. Steinbach, D. Raabe, and F. Varnik, “Viscous coalescence of droplets: A lattice Boltzmann study,” Phys. Fluids 25, 052101 (2013).

Data & Media loading...


Article metrics loading...



The dynamics of two liquid droplets coalescing in their saturated vapor phase are investigated by Lattice Boltzmann numerical simulations. Attention is paid to the effect of the vapor phase on the formation and growth dynamics of the liquid bridge in the viscous regime. We observe that the onset of the coalescence occurs earlier and the expansion of the bridge initially proceeds faster when the coalescence takes place in a saturated vapor compared to the coalescence in a non-condensable gas. We argue that the initially faster evolution of the coalescence in the saturated vapor is caused by the vapor transport through condensation during the early stages of the coalescence.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd