Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/12/10.1063/1.4936942
1.
1.N. Ashgriz and J. Y. Poo, “Coalescence and separation in binary collisions of liquid drops,” J. Fluid Mech. 221, 183 (1990).
http://dx.doi.org/10.1017/S0022112090003536
2.
2.M. G. Hajra, K. Mehta, and G. G. Chase, “Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media,” Sep. Purif. Technol. 30, 79 (2003).
http://dx.doi.org/10.1016/S1383-5866(02)00134-X
3.
3.Z. Hu and R. C. Srivastava, “Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations,” J. Atmos. Sci. 52, 1761 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
4.
4.H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Springer, 2010), Vol. 18.
5.
5.R. W. Hopper, “Coalescence of two equal cylinders: Exact results for creeping viscous plane flow driven by capillarity,” J. Am. Ceram. Soc. 67, C262 (1984).
http://dx.doi.org/10.1111/j.1151-2916.1984.tb19692.x
6.
6.J. Eggers, J. R. Lister, and H. A. Stone, “Coalescence of liquid drops,” J. Fluid Mech. 401, 293 (1999).
http://dx.doi.org/10.1017/S002211209900662X
7.
7.L. Duchemin, J. Eggers, and C. Josserand, “Inviscid coalescence of drops,” J. Fluid Mech. 487, 167 (2003).
http://dx.doi.org/10.1017/S0022112003004646
8.
8.D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95, 164503 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.016309
9.
9.W. Yao, H. J. Maris, P. Pennington, and G. M. Seidel, “Coalescence of viscous liquid drops,” Phys. Rev. E 71, 016309 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.164503
10.
10.T. Lee and P. F. Fischer, “Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases,” Phys. Rev. E 74, 046709 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.046709
11.
11.J. D. Paulsen, J. C. Burton, and S. R. Nagel, “Viscous to inertial crossover in liquid drop coalescence,” Phys. Rev. Lett. 106, 114501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.114501
12.
12.J. D. Paulsen, J. C. Burton, S. R. Nagel, S. Appathurai, M. T. Harris, and O. A. Basaran, “The inexorable resistance of inertia determines the initial regime of drop coalescence,” Proc. Natl. Acad. Sci. U. S. A. 109, 6857 (2012).
http://dx.doi.org/10.1073/pnas.1120775109
13.
13.J. E. Sprittles and Y. D. Shikhmurzaev, “Coalescence of liquid drops: Different models versus experiment,” Phys. Fluids 24, 122105 (2012).
http://dx.doi.org/10.1063/1.4773067
14.
14.L. Baroudi, M. Kawaji, and T. Lee, “Effects of initial conditions on the simulation of inertial coalescence of two drops,” Comput. Math. Appl. 67, 282 (2014).
http://dx.doi.org/10.1016/j.camwa.2013.05.002
15.
15.J. E. Sprittles and Y. D. Shikhmurzaev, “A parametric study of the coalescence of liquid drops in a viscous gas,” J. Fluid Mech. 753, 279 (2014).
http://dx.doi.org/10.1017/jfm.2014.362
16.
16.T. Lee and C.-L. Lin, “A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio,” J. Comput. Phys. 206, 16 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.12.001
17.
17.T. Lee and C.-L. Lin, “Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change,” Phys. Rev. E 67, 056703 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.056703
18.
18.J. C. Burton and P. Taborek, “Role of dimensionality and axisymmetry in fluid pinch-off and coalescence,” Phys. Rev. Lett. 98, 224502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.224502
19.
19.P. Yue, J. J. Feng, C. Liu, and J. Shen, “Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids,” J. Non-Newtonian Fluid Mech. 129, 163 (2005).
http://dx.doi.org/10.1016/j.jnnfm.2005.07.002
20.
20.H. J. Butt and M. Kappl, “Normal capillary forces,” Adv. Colloid Interface Sci. 146, 48 (2009).
http://dx.doi.org/10.1016/j.cis.2008.10.002
21.
21.M. M. Kohonen, N. Maeda, and H. K. Christenson, “Kinetics of capillary condensation in a nanoscale pore,” Phys. Rev. Lett. 82, 4667 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4667
22.
22.N. Chen, T. Kuhl, R. Tadmor, Q. Lin, and J. Israelachvili, “Large deformations during the coalescence of fluid interfaces,” Phys. Rev. Lett. 92, 024501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.024501
23.
23.M. Gross, I. Steinbach, D. Raabe, and F. Varnik, “Viscous coalescence of droplets: A lattice Boltzmann study,” Phys. Fluids 25, 052101 (2013).
http://dx.doi.org/10.1063/1.4803178
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/12/10.1063/1.4936942
Loading
/content/aip/journal/pof2/27/12/10.1063/1.4936942
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/12/10.1063/1.4936942
2015-12-23
2016-09-27

Abstract

The dynamics of two liquid droplets coalescing in their saturated vapor phase are investigated by Lattice Boltzmann numerical simulations. Attention is paid to the effect of the vapor phase on the formation and growth dynamics of the liquid bridge in the viscous regime. We observe that the onset of the coalescence occurs earlier and the expansion of the bridge initially proceeds faster when the coalescence takes place in a saturated vapor compared to the coalescence in a non-condensable gas. We argue that the initially faster evolution of the coalescence in the saturated vapor is caused by the vapor transport through condensation during the early stages of the coalescence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/12/1.4936942.html;jsessionid=cam8GGkkrZn5X1x0cN1kppmv.x-aip-live-02?itemId=/content/aip/journal/pof2/27/12/10.1063/1.4936942&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/12/10.1063/1.4936942&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/12/10.1063/1.4936942'
Right1,Right2,Right3,