Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/3/10.1063/1.4913754
1.
1.National Kidney Foundation, KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: Hemodialysis adequacy, peritoneal dialysis adequacy and vascular access, Technical Report No. 48, 2006.
2.
2.H. I. Feldman, S. Kobrin, and A. Wasserstein, “Hemodialysis vascular access morbidity,” J. Am. Soc. Nephrol. 7(4), 523535 (1996).
3.
3.G. H. Kazemzadeh, M. H. S. Modaghegh, H. Ravari, M. Daliri, L. Hoseini, and M. Nateghi, “Primary patency rate of native av fistula: Long term follow up,” Int. J. Clin. Exp. Med. 5(2), 173178 (2012).
4.
4.M. L. Robbin, N. E. Chamberlain, M. E. Lockhart, M. H. Gallichio, C. J. Young, M. H. Deierhoi, and M. Allon, “Hemodialysis arteriovenous fistula maturity: US evaluation,” Radiology 225(1), 5964 (2002).
http://dx.doi.org/10.1148/radiol.2251011367
5.
5.C. G. Caro, J. M. Fitz-Gerald, and R. C. Schroter, “Arterial wall shear and distribution of early atheroma in man,” Nature 223, 11591161 (1969).
http://dx.doi.org/10.1038/2231159a0
6.
6.C. G. Caro, “Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis,” Proc. R. Soc. B 177(1046), 109 (1971).
http://dx.doi.org/10.1098/rspb.1971.0019
7.
7.J. M. Dolan, F. J. Sim, H. Meng, and J. Kolega, “Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling,” Am. J. Physiol.: Cell Physiol. 302(8), 11091118 (2012).
http://dx.doi.org/10.1152/ajpcell.00369.2011
8.
8.V. Peiffer, S. J. Sherwin, and P. D. Weinberg, “Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review,” Cardiovasc. Res. 99(2), 242250 (2013).
http://dx.doi.org/10.1093/cvr/cvt044
9.
9.H. A. Himburg, D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman, “Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability,” Am. J. Physiol.: Heart Circ. Physiol. 286(5), 19161922 (2004).
http://dx.doi.org/10.1152/ajpheart.00897.2003
10.
10.D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov, “Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress,” Arterioscler., Thromb., Vasc. Biol. 5(3), 293302 (1985).
http://dx.doi.org/10.1161/01.ATV.5.3.293
11.
11.M. F. Fillinger, E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskanik, and C. E. Bredenberg, “Beneficial effects of banding on venous intimal-medial hyperplasia in arteriovenous loop grafts,” Am. J. Surg. 158, 8794 (1989).
http://dx.doi.org/10.1016/0002-9610(89)90353-X
12.
12.M. F. Fillinger, E. R. Reinitz, R. A. Schwartz, D. E. Resetarits, A. M. Paskanik, D. Bruch, and C. E. Bredenberg, “Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts,” J. Vasc. Surg. 11, 556566 (1990).
http://dx.doi.org/10.1016/0741-5214(90)90302-Q
13.
13.A. Chakraborty, S. Chakraborty, V. R. Jala, B. Haribabu, M. K. Sharp, and R. E. Berson, “Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology,” Biotechnol. Bioeng. 109(3), 695707 (2012).
http://dx.doi.org/10.1002/bit.24352
14.
14.J. M. Tarbell and Y. Qiu, “Arterial wall mass transport: The possible role of blood phase resistance in the localization of arterial disease,” in The Biomedical Engineering HandBook, edited by J. D. Bronzino (CRC Press, LLC, 2000).
15.
15.J. M. Tarbell, “Mass transport in arteries and the localization of atherosclerosis,” Annu. Rev. Biomed. Eng. 5, 79118 (2003).
http://dx.doi.org/10.1146/annurev.bioeng.5.040202.121529
16.
16.G. Coppola and C. G. Caro, “Arterial geometry, flow pattern, wall shear and mass transport: Potential physiological significance,” J. R. Soc., Interface 6(35), 519528 (2009).
http://dx.doi.org/10.1098/rsif.2008.0417
17.
17.J. A. Moore and C. R. Ethier, “Oxygen mass transfer calculations in large arteries,” J. Biomech. Eng. 119(4), 469475 (1997).
http://dx.doi.org/10.1115/1.2798295
18.
18.S. W. Lee, P. F. Fischer, F. Loth, T. J. Royston, J. K. Grogan, and H. S. Bassiouny, “Flow-induced vein-wall vibration in an arteriovenous graft,” J. Fluids Struct. 20(6), 837852 (2005).
http://dx.doi.org/10.1016/j.jfluidstructs.2005.04.006
19.
19.M. K. Krishnamoorthy, R. K. Banerje, Y. Wang, J. Zhang, A. S. Roy, S. F. Khoury, L. J. Arend, S. Rudich, and P. Roy-Chaudhury, “Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig av fistula,” Kidney Int. 74(11), 14101419 (2008).
http://dx.doi.org/10.1038/ki.2008.379
20.
20.A. K. Niemann, J. Udesen, and S. Thrysoe, “Can sites prone to flow induced vascular complications in av fistulas be assessed using computational fluid dynamics?,” J. Biomech. 43(10), 20022009 (2010).
http://dx.doi.org/10.1016/j.jbiomech.2010.02.037
21.
21.B. Ene-Iordache and A. Remuzzi, “Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: Low and oscillating shear stress locates the sites of stenosis,” Nephrol., Dial., Transplant. 27(1), 111 (2012).
http://dx.doi.org/10.1093/ndt/gfr342
22.
22.B. Ene-Iordache, L. Cattaneo, G. Dubini, and A. Remuzzi, “Effect of anastomosis angle on the localization of disturbed flow in ‘side-to-end’ fistulae for haemodialysis access,” Nephrol., Dial., Transplant. 28(4), 9971005 (2013).
http://dx.doi.org/10.1093/ndt/gfs298
23.
23.M. Sigovan, V. Rayz, W. Gasper, H. F. Alley, C. D. Owens, and D. Saloner, “Vascular remodeling in autogenous arterio-venous fistulas by mri and cfd,” Ann. Biomed. Eng. 41(4), 657668 (2013).
http://dx.doi.org/10.1007/s10439-012-0703-4
24.
24.P. M. McGah, D. F. Leotta, K. W. Beach, R. Eugene Zierler, and A. Aliseda, “Incomplete restoration of homeostatic shear stress within arteriovenous fistulae,” J. Biomech. Eng. 135(1), 011005 (2013).
http://dx.doi.org/10.1115/1.4023133
25.
25.J. H. Siggers and S. L. Waters, “Steady flows in pipes with finite curvature,” Phys. Fluids 17, 118 (2005).
http://dx.doi.org/10.1063/1.1955547
26.
26.J. H. Siggers and S. L. Waters, “Steady flows in pipes with finite curvature,” J. Fluid Mech. 600, 133165 (2008).
http://dx.doi.org/10.1017/S002211200800030X
27.
27.I. Di Piazza and M. Ciofalo, “Transition to turbulence in toroidal pipes,” J. Fluid Mech. 687, 72117 (2011).
http://dx.doi.org/10.1017/jfm.2011.321
28.
28.J. Alastruey, J. H. Siggers, V. Peiffer, D. J. Doorly, and S. J. Sherwin, “Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels,” Phys. Fluids 24(3), 031902 (2012).
http://dx.doi.org/10.1063/1.3694526
29.
29.C. Lomonte, F. Casucci, M. Antonelli, B. Giammaria, N. Losurdo, G. Marchio, and C. Basile, “Is there a place for duplex screening of the brachial artery in the maturation of arteriovenous fistulas?,” Semin. Dial. 18, 243246 (2005).
http://dx.doi.org/10.1111/j.1525-139X.2005.18320.x
30.
30.G. D. Lowe, F. G. Fowkes, J. Dawes, P. T. Donnan, S. E. Lennie, and E. Housley, “Blood viscosity, fibrinogen, and activation of coagulation and leukocytes in peripheral arterial disease and the normal population in the edinburgh artery study,” Circulation 87(6), 19151920 (1993).
http://dx.doi.org/10.1161/01.CIR.87.6.1915
31.
31.Y. Fuat and G. M. Yasar, “A critical review on blood flow in large arteries, relevance to blood rheology, viscosity models, and physiologic conditions,” Korea-Aust. Rheol. J. 20(4), 197211 (2008).
http://dx.doi.org/10.1007/s13367-011-0012-8
32.
32.D. E. Brooks, J. W. Goodwin, and G. V. Seaman, “Interactions among erythrocytes under shear,” J. Appl. Physiol. 28(2), 172177 (1970).
33.
33.J. P. Whiteley, D. J. Gavaghan, and C. E. W. Hahn, “Mathematical modelling of oxygen transport to tissue,” J. Math. Biol. 44(6), 503522 (2002).
http://dx.doi.org/10.1007/s002850200135
34.
34.X. Liu, Y. Fan, and X. Deng, “Effect of spiral flow on the transport of oxygen in the aorta: A numerical study,” Ann. Biomed. Eng. 38(3), 917926 (2010).
http://dx.doi.org/10.1007/s10439-009-9878-8
35.
35.S. Sivanesan, T. V. How, and A. Bakran, “Characterizing flow distributions in av fistulae for haemodialysis access,” Nephrol., Dial., Transplant. 13, 31083110 (1998).
http://dx.doi.org/10.1093/ndt/13.12.3108
36.
36.D. G. Buerk and T. K. Goldstick, “Arterial wall oxygen consumption rate varies spatially,” Am. J. Physiol. 243(6), 948958 (1982).
37.
37.B. Klitzman, A. S. Popel, and B. R. Duling, “Oxygen transport in resting and contracting hamster cremaster muscles: Experimental and theoretical microvascular studies,” Microvasc. Res. 25, 108131 (1983).
http://dx.doi.org/10.1016/0026-2862(83)90047-X
38.
38.Y. Qiu and J. M. Tarbell, “Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery,” Ann. Biomed. Eng. 28(1), 2638 (2000).
http://dx.doi.org/10.1114/1.251
39.
39.S. Tada and J. M. Tarbell, “Oxygen mass transport in a compliant carotid bifurcation model,” Ann. Biomed. Eng. 34(9), 13891399 (2006).
http://dx.doi.org/10.1007/s10439-006-9155-z
40.
40.S. Tada, “Numerical study of oxygen transport in a carotid bifurcation,” Phys. Med. Biol. 55(14), 39934010 (2010).
http://dx.doi.org/10.1088/0031-9155/55/14/004
41.
41.G. Coppola and C. G. Caro, “Oxygen mass transfer in a model three-dimensional artery,” J. R. Soc., Interface 5(26), 10671075 (2008).
http://dx.doi.org/10.1098/rsif.2007.1338
42.
42.S. C. R. Dennis and M. Ng, “Dual solutions for steady laminar flow through a curved tube,” Q. J. Mech. Appl. Math. 35, 305324 (1982).
http://dx.doi.org/10.1093/qjmam/35.3.305
43.
43.K. Valen-Sendstad, K. A. Mardal, M. Mortensen, B. A. Reif, and H. P. Langtangen, “Direct numerical simulation of transitional flow in a patient specific intracranial aneurysm,” J. Biomech. 44(16), 28262832 (2011).
http://dx.doi.org/10.1016/j.jbiomech.2011.08.015
44.
44.P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems, and Symmetry (Cambridge University Press, 1996).
45.
45.L. Sirovich, “Turbulence and the dynamics of coherent structures. Part I: Coherent structures,” Q. Appl. Math. 45(3), 561 (1987).
46.
46.L. Grinberg, A. Yakhot, and G. E. Karniadakis, “Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition,” Ann. Biomed. Eng. 37(11), 22002217 (2009).
http://dx.doi.org/10.1007/s10439-009-9769-z
47.
47.H. Masuda, Y. J. Zhuang, T. M. Singh, K. Kawamura, M. Murakami, C. K. Zarins, and S. Glagov, “Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement,” Arterioscler., Thromb., Vasc. Biol. 19(10), 22982307 (1999).
http://dx.doi.org/10.1161/01.ATV.19.10.2298
48.
48.E. Sho, M. Sho, T. M. Singh, C. Xu, C. K. Zarins, and H. Masuda, “Blood flow decrease induces apoptosis of endothelial cells in previously dilated arteries resulting from chronic high blood flow,” Arterioscler., Thromb., Vasc. Biol. 21(7), 11391145 (2001).
http://dx.doi.org/10.1161/hq0701.092118
49.
49.E. Sho, H. Nanjo, M. Sho, M. Kobayashi, M. Komatsu, K. Kawamura, C. Xu, C. K. Zarins, and H. Masuda, “Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress,” J. Vasc. Surg. 39(3), 601612 (2004).
http://dx.doi.org/10.1016/j.jvs.2003.10.058
50.
50.C. Irace, C. Cortese, E. Fiaschi, C. Carallo, E. Farinaro, and A. Gnasso, “Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk,” Stroke 35(2), 464468 (2004).
http://dx.doi.org/10.1161/01.STR.0000111597.34179.47
51.
51.J. M. Dolan, J. Kolega, and H. Meng, “High wall shear stress and spatial gradients in vascular pathology: A review,” Ann. Biomed. Eng. 41(7), 14111427 (2013).
http://dx.doi.org/10.1007/s10439-012-0695-0
52.
52.D. D. Heistad, M. L. Marcus, G. E. Larsen, and M. L. Armstrong, “Role of vasa vasorum in nourishment of the aortic wall,” Am. J. Physiol. 240(5), 781787 (1981).
53.
53.R. J. Paul, “Chemical energetics of vascular smooth muscle,” in Handbook of Physiology: The Cardiovascular System. Vascular Smooth Muscle (American Physiological Society, 1984), Chap. 9, pp. 201236.
54.
54.C. G. Caro, T. J. Pedley, and R. C. Schroter, The Mechanics of the Circulation (Cambridge University Press, 2011).
55.
55.C. G. Caro, N. J. Cheshire, and N. Watkins, “Preliminary comparative study of small amplitude helical and conventional eptfe arteriovenous shunts in pigs,” J. R. Soc., Interface 2, 261266 (2005).
http://dx.doi.org/10.1098/rsif.2005.0044
56.
56.A. N. Cookson, D. J. Doorly, and S. J. Sherwin, “Mixing through stirring of steady flow in small amplitude helical tubes,” Ann. Biomed. Eng. 37, 710721 (2009).
http://dx.doi.org/10.1007/s10439-009-9636-y
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/3/10.1063/1.4913754
Loading
/content/aip/journal/pof2/27/3/10.1063/1.4913754
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/3/10.1063/1.4913754
2015-03-17
2016-05-28

Abstract

Arterio-Venous Fistulae (AVF) are the preferred method of vascular access for patients with end stage renal disease who need hemodialysis. In this study, simulations of blood flow and oxygen transport were undertaken in various idealized AVF configurations. The objective of the study was to understand how arterial curvature affects blood flow and oxygen transport patterns within AVF, with a focus on how curvature alters metrics known to correlate with vascular pathology such as Intimal Hyperplasia (IH). If one subscribes to the hypothesis that unsteady flow causes IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto the outer-curvature of a curved artery. However, if one subscribes to the hypothesis that low wall shear stress and/or low lumen-to-wall oxygen flux (leading to wall hypoxia) cause IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto a straight artery, or the inner-curvature of a curved artery. We note that the recommendations are incompatible—highlighting the importance of ascertaining the exact mechanisms underlying development of IH in AVF. Nonetheless, the results clearly illustrate the important role played by arterial curvature in determining AVF hemodynamics, which to our knowledge has been overlooked in all previous studies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/3/1.4913754.html;jsessionid=G8vZk-Cdy9Rml4P1f-6zkmO3.x-aip-live-03?itemId=/content/aip/journal/pof2/27/3/10.1063/1.4913754&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/3/10.1063/1.4913754&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/3/10.1063/1.4913754'
Right1,Right2,Right3,