Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/3/10.1063/1.4914417
1.
1.W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. S. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, “Catalytic nanomotors: Autonomous movement of striped nanorods,” J. Am. Chem. Soc. 126, 1342413431 (2004).
http://dx.doi.org/10.1021/ja047697z
2.
2.R. Golestanian, T. B. Liverpool, and A. Ajdari, “Propulsion of a molecular machine by asymmetric distribution of reaction products,” Phys. Rev. Lett. 94, 220801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.220801
3.
3.R. Golestanian, T. B. Liverpool, and A. Ajdari, “Designing phoretic micro-and nano-swimmers,” New J. Phys. 9, 126 (2007).
http://dx.doi.org/10.1088/1367-2630/9/5/126
4.
4.S. J. Ebbens and J. R. Howse, “Direct observation of the direction of motion for spherical catalytic swimmers,” Langmuir 27, 1229312296 (2011).
http://dx.doi.org/10.1021/la2033127
5.
5.S. Ebbens, M.-H. Tu, J. R. Howse, and R. Golestanian, “Size dependence of the propulsion velocity for catalytic janus-sphere swimmers,” Phys. Rev. E 85, 020401 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.020401
6.
6.J. L. Anderson, M. E. Lowell, and D. C. Prieve, “Motion of a particle generated by chemical gradients. Part 1. Non-electrolytes,” J. Fluid Mech. 117, 107121 (1982).
http://dx.doi.org/10.1017/S0022112082001542
7.
7.U. M. Córdova-Figueroa and J. F. Brady, “Osmotic propulsion: The osmotic motor,” Phys. Rev. Lett. 100, 158303 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.158303
8.
8.J. F. Brady, “Particle motion driven by solute gradients with application to autonomous motion: Continuum and colloidal perspectives,” J. Fluid Mech. 667, 216259 (2011).
http://dx.doi.org/10.1017/S0022112010004404
9.
9.U. M. Córdova-Figueroa, J. F. Brady, and S. Shklyaev, “Osmotic propulsion of colloidal particles via constant surface flux,” Soft Matter 9, 63826390 (2013).
http://dx.doi.org/10.1039/c3sm00017f
10.
10.W. F. Paxton, A. Sen, and T. E. Mallouk, “Motility of catalytic nanoparticles through self-generated forces,” Chem. - Eur. J. 11, 6462 (2005).
http://dx.doi.org/10.1002/chem.200500167
11.
11.G. A. Ozin, I. Manners, S. Fournier-Bidoz, and A. Arsenault, “Dream nanomachines,” Adv. Mater. 17, 30113018 (2005).
http://dx.doi.org/10.1002/adma.200501767
12.
12.S. Fournier-Bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, “Synthetic self-propelled nanorotors,” Chem. Commun. 2005, 441443.
13.
13.M. N. Popescu, S. Dietrich, M. Tasinkevych, and J. Ralston, “Phoretic motion of spheroidal particles due to self-generated solute gradients,” Eur. Phys. J. E: Soft Matter Biol. Phys. 31, 351367 (2010).
http://dx.doi.org/10.1140/epje/i2010-10593-3
14.
14.E. Yariv, “Electrokinetic self-propulsion by inhomogeneous surface kinetics,” Proc. R. Soc. A 467, 1645 (2011).
http://dx.doi.org/10.1098/rspa.2010.0503
15.
15.E. Yariv and S. Michelin, “Phoretic self-propulsion at large Péclet numbers,” J. Fluid Mech. 768, R1 (2015).
http://dx.doi.org/10.1017/jfm.2015.78
16.
16.R. G. Cox, “The motion of long slender bodies in a viscous fluid. Part 1. General theory,” J. Fluid Mech. 44, 791810 (1970).
http://dx.doi.org/10.1017/S002211207000215X
17.
17.G. K. Batchelor, “Slender-body theory for particles of arbitrary cross-section in Stokes flow,” J. Fluid Mech. 44, 419441 (1970).
http://dx.doi.org/10.1017/S002211207000191X
18.
18.E. J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991).
19.
19.S. Michelin and E. Lauga, “Phoretic self-propulsion at finite Péclet numbers,” J. Fluid Mech. 747, 572604 (2014).
http://dx.doi.org/10.1017/jfm.2014.158
20.
20.G. K. Batchelor, “The stress system in a suspension of force-free particles,” J. Fluid Mech. 41, 545570 (1970).
http://dx.doi.org/10.1017/S0022112070000745
21.
21.S. Shklyaev, J. F. Brady, and U. M. Córdova-Figueroa, “Non-spherical osmotic motor: Chemical sailing,” J. Fluid Mech. 748, 488520 (2014).
http://dx.doi.org/10.1017/jfm.2014.177
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/3/10.1063/1.4914417
Loading
/content/aip/journal/pof2/27/3/10.1063/1.4914417
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/3/10.1063/1.4914417
2015-03-10
2016-12-08

Abstract

We consider self-diffusiophoresis of axisymmetric particles using the continuum description of Golestanian [“Designing phoretic micro-and nano-swimmers,” New J. Phys. , 126 (2007)], where the chemical reaction at the particle boundary is modelled by a prescribed distribution of solute absorption and the interaction of solute molecules with that boundary is represented by diffusio-osmotic slip. With a view towards modelling of needle-like particle shapes, commonly employed in experiments, the self-propulsion problem is analyzed using slender-body theory. For a particle of length 2, whose boundary is specified by the axial distribution () of cross-sectional radius, we obtain the approximation for the particle velocity, wherein () is the solute-flux distribution, the diffusio-osmotic slip coefficient, and the solute diffusivity. This approximation can accommodate discontinuous flux distributions, which are commonly used for describing bimetallic particles; it agrees strikingly well with the numerical calculations of Popescu [“Phoretic motion of spheroidal particles due to self-generated solute gradients,” Eur. Phys. J. E: Soft Matter Biol. Phys. , 351–367 (2010)], performed for spheroidal particles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/3/1.4914417.html;jsessionid=PQZMc7WLhHSn0pq6hry1DSt3.x-aip-live-06?itemId=/content/aip/journal/pof2/27/3/10.1063/1.4914417&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/3/10.1063/1.4914417&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/3/10.1063/1.4914417'
Right1,Right2,Right3,