Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/3/10.1063/1.4915890
1.
1.K. Shariff, A. Leonard, and J. H. Ferziger, “Dynamics of a class of vortex rings,” NASA Technical Memorandum 102257, 1989.
2.
2.K. Shariff and A. Leonard, “Vortex rings,” Annu. Rev. Fluid Mech. 24, 235 (1992).
http://dx.doi.org/10.1146/annurev.fl.24.010192.001315
3.
3.P. G. Saffman, Vortex Dynamics (Cambridge University Press, 1992).
4.
4.T. T. Lim and T. B. Nickels, “Vortex rings,” in Fluid Vortices, edited by S. I. Green (Kluwer, Dordrecht, 1995).
5.
5.T. T. Lim, “A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers,” Phys. Fluids 9, 239 (1997).
http://dx.doi.org/10.1063/1.869160
6.
6.V. V. Meleshko, “Coaxial axisymmetric vortex rings: 150 years after Helmholtz,” Theor. Comput. Fluid Dyn. 24, 403 (2009).
http://dx.doi.org/10.1007/s00162-009-0148-z
7.
7.Y. Oshima, T. Kambe, and A. Asaka, “Interaction of two vortex rings moving along a common axis of symmetry,” J. Phys. Soc. Jpn. 38, 1159 (1975).
http://dx.doi.org/10.1143/JPSJ.38.1159
8.
8.H. Yamada and T. Matsui, “Preliminary study of mutual slip-through of a pair of vortices,” Phys. Fluids 21, 292 (1978).
http://dx.doi.org/10.1063/1.862206
9.
9.S. K. Stanaway, B. J. Cantwell, and P. R. Spalart, “A numerical study of viscous vortex rings using a spectral method,” NASA Technical Memorandum 101041, 1988.
10.
10.N. Riley and D. P. Stevens, “A note on leapfrogging vortex rings,” Fluid Dyn. Res. 11, 235 (1993).
http://dx.doi.org/10.1016/0169-5983(93)90114-P
11.
11.A. Pentek, T. Tel, and Z. Toroczkai, “Chaotic advection in the velocity field of leapfrogging vortex pairs,” J. Phys. A: Math. Gen. 28, 2191 (1995).
http://dx.doi.org/10.1088/0305-4470/28/8/013
12.
12.B. N. Shashikanth and J. E. Marsden, “Leapfrogging vortex rings: Hamiltonian structure, geometric phases and discrete reduction,” Fluid Dyn. Res. 33, 333 (2003).
http://dx.doi.org/10.1016/j.fluiddyn.2003.05.001
13.
13.Y. S. K. Liow, M. C. Thompson, and K. Hourigan, “Sound generated by a pair of axisymmetric coaxial vortex rings,” AIAA J. 43, 326 (2005).
http://dx.doi.org/10.2514/1.5797
14.
14.L. Tophoj and H. Aref, “Instability of vortex pair leapfrogging,” Phys. Fluids 25, 014107 (2013).
http://dx.doi.org/10.1063/1.4774333
15.
15.J. Satti and J. Peng, “Leapfrogging of two thick-cored vortex rings,” Fluid Dyn. Res. 45, 035503 (2013).
http://dx.doi.org/10.1088/0169-5983/45/3/035503
16.
16.A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013).
http://dx.doi.org/10.1134/S1560354713010036
17.
17.A. V. Borisov, A. A. Kilin, I. S. Mamaev, and V. A. Tenenev, “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014).
http://dx.doi.org/10.1088/0169-5983/46/3/031415
18.
18.M. Cheng, J. Lou, and L. S. Luo, “Numerical study of a vortex ring impacting a flat wall,” J. Fluid Mech. 660, 430 (2010).
http://dx.doi.org/10.1017/S0022112010002727
19.
19.M. Cheng, J. Lou, and T. T. Lim, “Vortex ring with swirl: A numerical study,” Phys. Fluids 22, 097101 (2010).
http://dx.doi.org/10.1063/1.3478976
20.
20.M. Cheng, J. Lou, and T. T. Lim, “A numerical study of a vortex ring impacting a permeable wall,” Phys. Fluids 26, 103602 (2014).
http://dx.doi.org/10.1063/1.4897519
21.
21.M. Junk and A. Klar, “Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method,” SIAM J. Sci. Comput. 22, 1 (2000).
http://dx.doi.org/10.1137/S1064827599357188
22.
22.M. Junk, “A finite difference interpretation of the lattice Boltzmann method,” Numer. Methods Partial Differ. Equation 17, 383 (2001).
http://dx.doi.org/10.1002/num.1018
23.
23.M. Junk, A. Klar, and L.-S. Luo, “Asymptotic analysis of the lattice Boltzmann equation,” J. Comput. Phys. 210, 676 (2005).
http://dx.doi.org/10.1016/j.jcp.2005.05.003
24.
24.P. Orlandi and R. Verzicco, “Vortex rings impinging on walls: Axisymmetric and three-dimensional simulations,” J. Fluid Mech. 256, 615 (1993).
http://dx.doi.org/10.1017/S0022112093002903
25.
25.T. Maxworthy, “The structure and stability of vortex rings,” J. Fluid Mech. 51, 15 (1972).
http://dx.doi.org/10.1017/S0022112072001041
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/3/10.1063/1.4915890
Loading
/content/aip/journal/pof2/27/3/10.1063/1.4915890
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/3/10.1063/1.4915890
2015-03-19
2016-09-25

Abstract

A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. , 33 (2013); Borisov , “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. , 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/3/1.4915890.html;jsessionid=xzFKBlQmBmHLEEXPQF5E1wVS.x-aip-live-06?itemId=/content/aip/journal/pof2/27/3/10.1063/1.4915890&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/3/10.1063/1.4915890&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/3/10.1063/1.4915890'
Right1,Right2,Right3,