Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/4/10.1063/1.4916573
1.
1.O. P. Francis, G. G. Panteleev, and D. E. Atkinson, “Ocean wave conditions in the Chukchi Sea from satellite and in situ observations,” Geophys. Res. Lett. 38, L24610 , doi:10.1029/2011gl049839 (2011).
http://dx.doi.org/10.1029/2011gl049839
2.
2.J. Thomson and W. E. Rogers, “Swell and sea in the emerging Arctic Ocean,” Geophys. Res. Lett. 41, 3136 , doi:10.1002/2014gl059983 (2014).
http://dx.doi.org/10.1002/2014GL059983
3.
3.P. J. Langhorne, V. A. Squire, C. Fox, and T. G. Haskell, “Break-up of sea ice by ocean waves,” Ann. Glaciol. 27, 438 (1998).
4.
4.S. J. Prinsenberg and I. K. Peterson, “Observing regional-scale pack-ice decay processes with helicopter-borne sensors and moored upward-looking sonars,” Ann. Glaciol. 52, 35 (2011).
http://dx.doi.org/10.3189/172756411795931688
5.
5.M. Steele, “Sea ice melting and floe geometry in a simple ice-ocean model,” J. Geophys. Res. 97, 17729 , doi:10.1029/92jc01755 (1992).
http://dx.doi.org/10.1029/92JC01755
6.
6.R. Massom and S. Stammerjohn, “Antarctic sea ice variability: Physical and ecological implications,” Polar Sci. 4, 149 (2010).
http://dx.doi.org/10.1016/j.polar.2010.05.001
7.
7.V. A. Squire, “Past, present and impendent hydroelastic challenges in the polar and subpolar seas,” Philos. Trans. R. Soc., A 369, 2813 (2011).
http://dx.doi.org/10.1098/rsta.2011.0093
8.
8.A. L. Kohout, M. J. M. Williams, S. M. Dean, and M. H. Meylan, “Storm-induced sea ice breakup and the implications for ice extent,” Nature 509, 604 (2014).
http://dx.doi.org/10.1038/nature13262
9.
9.M. J. Doble and J.-R. Bidlot, “Wavebuoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: Progress towards global waves-in-ice modeling,” Ocean Modell. 70, 166 (2013).
http://dx.doi.org/10.1016/j.ocemod.2013.05.012
10.
10.T. D. Williams, L. G. Bennetts, D. Dumont, V. A. Squire, and L. Bertino, “Wave-ice interactions in the marginal ice zone. Part 1: Theoretical foundations,” Ocean Modell. 71, 81 (2013).
http://dx.doi.org/10.1016/j.ocemod.2013.05.010
11.
11.T. D. Williams, L. G. Bennetts, D. Dumont, V. A. Squire, and L. Bertino, “Wave-ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1d transects of the ocean surface,” Ocean Modell. 71, 92 (2013).
http://dx.doi.org/10.1016/j.ocemod.2013.05.011
12.
12.V. A. Squire, J. P. Dugan, P. Wadhams, P. J. Rottier, and A. K. Liu, “Of ocean waves and sea ice,” Annu. Rev. Fluid Mech. 27, 115 (1995).
http://dx.doi.org/10.1146/annurev.fl.27.010195.000555
13.
13.V. A. Squire, “Of ocean waves and sea-ice revisited,” Cold Reg. Sci. Technol. 49, 110 (2007).
http://dx.doi.org/10.1016/j.coldregions.2007.04.007
14.
14.F. Montiel, F. Bonnefoy, P. Ferrant, L. G. Bennetts, V. A. Squire, and P. Marsault, “Hydroelastic response of floating elastic disks to regular waves. Part 1: Wave tank experiments,” J. Fluid Mech. 723, 604 (2013).
http://dx.doi.org/10.1017/jfm.2013.123
15.
15.F. Montiel, L. G. Bennetts, V. A. Squire, F. Bonnefoy, and P. Ferrant, “Hydroelastic response of floating elastic disks to regular waves. Part 2: Modal analysis,” J. Fluid Mech. 723, 629 (2013).
http://dx.doi.org/10.1017/jfm.2013.124
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4916573 for example lateral motions of the floe, high-definition movies corresponding to Figure 2, model predictions of the modal weights, example animations of the experiment-theory comparisons, and extended versions of Figures 5 and 6.[Supplementary Material]
17.
17.M. H. Meylan, “Wave response of an ice floe of arbitrary geometry,” J. Geophys. Res. 107, 5-1 , doi:10.1029/2000jc000713 (2002).
http://dx.doi.org/10.1029/2000jc000713
18.
18.R. E. D. Bishop, W. G. Price, and Y. Wu, “A general linear hydroelasticity theory of floating structures moving in a seaway,” Philos. Trans. R. Soc., A 316, 375 (1986).
http://dx.doi.org/10.1098/rsta.1986.0016
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/4/10.1063/1.4916573
Loading
/content/aip/journal/pof2/27/4/10.1063/1.4916573
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/4/10.1063/1.4916573
2015-04-15
2016-12-10

Abstract

An experimental model is used to validate a theoretical model of a sea ice floe’s flexural motion, induced by ocean waves. A thin plastic plate models the ice floe in the experiments. Rigid and compliant plastics and two different thicknesses are tested. Regular incident waves are used, with wavelengths less than, equal to, and greater than the floe length, and steepnesses ranging from gently sloping to storm-like. Results show the models agree well, despite the overwash phenomenon occurring in the experiments, which the theoretical model neglects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/4/1.4916573.html;jsessionid=EchOjgXnxg_ODpKEXs2zOVd0.x-aip-live-02?itemId=/content/aip/journal/pof2/27/4/10.1063/1.4916573&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/4/10.1063/1.4916573&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/4/10.1063/1.4916573'
Right1,Right2,Right3,