Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/4/10.1063/1.4918613
1.
1.T. Le Borgne, M. Dentz, D. Bolster, J. Carrerra, J.-R. Dreuzy, and P. Davy, “Non-Fickian mixing: Temporal evolution of the scalar dissipation rate in heterogeneous porous media,” Adv. Water Resour. 33(12), 14681475 (2010).
http://dx.doi.org/10.1016/j.advwatres.2010.08.006
2.
2.E. Villermaux, “Mixing by porous media,” C. R. Mec. 340(11), 933943 (2012).
http://dx.doi.org/10.1016/j.crme.2012.10.042
3.
3.G. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube,” Proc. R. Soc. A 219(1137), 186203 (1953).
http://dx.doi.org/10.1098/rspa.1953.0139
4.
4.R. Aris, “On the dispersion of a solute in pulsating flow through a tube,” Proc. R. Soc. A 259(1298), 370376 (1960).
http://dx.doi.org/10.1098/rspa.1960.0231
5.
5.C. Price, X. Zhou, W. Li, and L. Wang, “Real-time measurement of solute transport within the lacunar–canalicular system of mechanically loaded bone: Direct evidence for load-induced fluid flow,” J. Bone Miner. Res. 26(2), 277285 (2011).
http://dx.doi.org/10.1002/jbmr.211
6.
6.S. M. Schmidt, M. J. McCready, and A. E. Ostafin, “Effect of oscillating fluid shear on solute transport in cortical bone,” J. Biomech. 38(12), 23372343 (2005).
http://dx.doi.org/10.1016/j.jbiomech.2004.10.013
7.
7.A. Daitche and T. Tél, “Dynamics of blinking vortices,” Phys. Rev. E 79(1), 016210 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.016210
8.
8.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels,” Science 295(5555), 647651 (2002).
http://dx.doi.org/10.1126/science.1066238
9.
9.E. Villermaux, A. D. Stroock, and H. A. Stone, “Bridging kinematics and concentration content in a chaotic micromixer,” Phys. Rev. E 77, 015301R (2008).
http://dx.doi.org/10.1103/PhysRevE.77.015301
10.
10.A. Sierou and J. F. Brady, “Shear-induced self-diffusion in non-colloidal suspensions,” J. Fluid Mech. 506, 285314 (2004).
http://dx.doi.org/10.1017/S0022112004008651
11.
11.V. Breedveld, D. Van den Ende, M. Bosscher, R. J. J. Jongschaap, and J. Mellema, “Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions,” J. Chem. Phys. 116, 23 (2002).
http://dx.doi.org/10.1063/1.1478770
12.
12.F. R. Da Cunha and E. J. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech. 309, 211223 (1996).
http://dx.doi.org/10.1017/S0022112096001619
13.
13.E. C. Eckstein, D. G. Bailey, and A. H. Shapiro, “Self-diffusion of particles in shear flow of a suspension,” J. Fluid Mech. 79, 191208 (1977).
http://dx.doi.org/10.1017/S0022112077000111
14.
14.P. A. Arp and S. G. Mason, “The kinetics of flowing dispersions IX. Doublets of rigid spheres (Experimental),” J. Colloid Interface Sci. 61(4095), 4461 (1976).
http://dx.doi.org/10.1016/0021-9797(77)90414-3
15.
15.D. Leighton and A. Acrivos, “Measurement of shear-induced self-diffusion in concentrated suspensions of spheres,” J. Fluid Mech. 177, 109131 (1987).
http://dx.doi.org/10.1017/S0022112087000880
16.
16.B. Metzger, O. Rahli, and X. Yin, “Heat transfer across sheared suspensions: Role of the shear-induced diffusion,” J. Fluid Mech. 724, 527552 (2013).
http://dx.doi.org/10.1017/jfm.2013.173
17.
17.N. H. L. Wang and K. H. Keller, “Augmented transport of extracellular solutes in concentrated erythrocyte suspensions in Couette flow,” J. Colloid Interface Sci. 103(1), 210225 (1985).
http://dx.doi.org/10.1016/0021-9797(85)90093-1
18.
18.L. Wang, D. L. Koch, X. Yin, and C. Cohen, “Hydrodynamic diffusion and mass transfer across a sheared suspension of neutrally buoyant spheres,” Phys. Fluids 21(3), 033303 (2009).
http://dx.doi.org/10.1063/1.3098446
19.
19.J. A. Dijksman, F. Rietz, K. A. Lorincz, M. van Hecke, and W. Losert, “Invited article: Refractive index matched scanning of dense granular materials,” Rev. Sci. Instrum. 83(1), 011301 (2012).
http://dx.doi.org/10.1063/1.3674173
20.
20.E. Villermaux, “On dissipation in stirred mixtures,” Adv. Appl. Mech. 45, 91107 (2012).
http://dx.doi.org/10.1016/B978-0-12-380876-9.00003-3
21.
21.C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurements in microfluidic devices,” Talanta 56, 365373 (2002).
http://dx.doi.org/10.1016/S0039-9140(01)00602-6
22.
22.F. Chilla, S. Ciliberto, C. Innocenti, and E. Pampaloni, “Boundary layer and scaling properties in turbulent thermal convection,” Il Nuovo Cimento 15 D(09), 12291249 (1993).
http://dx.doi.org/10.1007/bf02451729
23.
23.D. L. Koch, “Hydrodynamic diffusion near solid boundaries with applications to heat and mass transport into sheared suspensions and fixed-fibre beds,” J. Fluid Mech. 318, 3147 (1996).
http://dx.doi.org/10.1017/S002211209600701X
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4918613 for three movies: Movie 1) Dispersion of a rhodamine layer in a sheared suspension of particles, Movie 2) PIV in the flowing suspension, and Movie 3) Rolling-coating mechanism.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/4/10.1063/1.4918613
Loading
/content/aip/journal/pof2/27/4/10.1063/1.4918613
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/4/10.1063/1.4918613
2015-04-15
2016-09-29

Abstract

We investigate the dispersion of a layer of dye initially applied at the outer wall of a cylindrical Couette-cell into a sheared suspension of non-Brownian spherical particles. The process is directly visualized and quantified at the particle scale. A “rolling-coating” mechanism is found to convectively transport the dye at a constant rate directly from the wall towards the bulk. The fluid velocity fluctuations, ′, measured with particle image velocimetry, and the imposed shear-rate, , are used to define a diffusion coefficient, , which is found to increase linearly with the distance from the wall. A solution of the transport equation accounting for this inhomogeneous stirring field describes quantitatively the concentration profiles measured experimentally. It exhibits a super-diffusive character, a consequence of the increase of the stirring strength with distance from the wall. Movies are available with the online version of the paper.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/4/1.4918613.html;jsessionid=nczw7ThvsI_IKBY8vtR3nq_n.x-aip-live-06?itemId=/content/aip/journal/pof2/27/4/10.1063/1.4918613&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/4/10.1063/1.4918613&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/4/10.1063/1.4918613'
Right1,Right2,Right3,