Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Parthasarathy and J. T. Groves, “Protein patterns at lipid bilayer junctions,” Proc. Natl. Acad. Sci. U. S. A. 101, 12798 (2004).
2.J. T. Groves, “Bending mechanics and molecular organization in biological membranes,” Annu. Rev. Phys. Chem. 58, 697 (2007).
3.A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285, 221 (1999).
4.C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer, “Three-dimensional segregation of supramolecular activation clusters in T cells,” Nature 395, 82 (1998).
5.J. F. Allard, O. Dushek, D. D. Coombs, and P. A. Merwe, “Mechanical modulation of receptor-ligand interactions at cell–cell interfaces,” Biophys. J. 102, 1265 (2012).
6.F. Y. Leong and K.-H. Chiam, “Adhesive dynamics of lubricated films,” Phys. Rev. E 81, 04923 (2010).
7.S. Y. Qi, J. T. Groves, and A. K. Chakraborty, “Synaptic pattern formation during cellular recognition,” Proc. Natl. Acad. Sci. U. S. A. 98, 6548 (2001).
8.N. J. Burroughs and C. Wülfing, “Differential segregation in a cell–cell contact interface: The dynamics of the immunological synapse,” Biophys. J. 83, 1784 (2002).
9.N. J. Burroughs and P. A. van der Merwe, “Stochasticity and spatial heterogeneity in T-cell activation,” Immunol. Rev. 216, 69 (2007).
10.T. R. Weikl, J. T. Groves, and R. Lipowsky, “Pattern formation during adhesion of multicomponent membranes,” EPL 59, 916 (2002).
11.T. R. Weikl and R. Lipowsky, “Pattern formation during T-cell adhesion,” Biophys. J. 87, 3665 (2004).
12.M. T. Figge and M. Meyer-Hermann, “Modeling receptor-ligand binding kinetics in immunological synapse formation,” Eur. Phys. J. D 51, 153 (2009).
13.M. J. Paszek, D. Boettiger, V. M. Weaver, and D. A. Hammer, “Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate,” PLoS Comput. Biol. 5, e1000604 (2009).
14.E. Reister-Gottfried, T. Bihr, U. Seifert, and A.-S. Smith, “Two intertwined facets of adherent membranes: Membrane roughness and correlations between ligand-receptors bonds,” New J. Phys. 13, 025003 (2011).
15.E. Reister-Gottfried, K. Sengupta, B. Lorz, E. Sackmann, U. Seifert, and A.-S. Smith, “Dynamics of specific vesicle-substrate adhesion: From local events to global dynamics,” Phys. Rev. Lett. 101, 208103 (2008).
16.T. Bihr, U. Seifert, and A.-S. Smith, “Nucleation of ligand-receptor domains in membrane adhesion,” Phys. Rev. Lett. 101, 258101 (2012).
17. The protein stiffness can in certain instances be a function deformation/flow,18 but we use here the simplest description with a constant protein spring stiffness.
18.A. Salas, M. Shimaoka, A. N. Kogan, C. Harwood, U. H. von Andrian, and T. A. Springer, “Rolling adhesion through an extended conformation of integrin αLβ2 and relation to α I and β I-like domain interaction,” Immunity 20, 1393 (2004).
19.A. E. Hosoi and L. Mahadevan, “Peeling, healing, and bursting in a lubricated elastic sheet,” Phys. Rev. Lett. 93, 137802 (2007).
20.A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Rev. Mod. Phys. 69, 93 (1997).
21.H. A. Kramer, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica 7(4), 284 (1940).
22.G. I. Bell, M. Dembo, and P. Bongrand, “Cell adhesion. Competition between nonspecific repulsion and specific bonding,” Biophys. J. 45, 1051 (1984).
23.B. Davidovitch, E. Moro, and H. A. Stone, “Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations,” Phys. Rev. Lett. 95, 244505 (2005).
24.G. Grün, K. Mecke, and M. Rauscher, “Thin-film flow influenced by thermal noise,” J. Stat. Phys. 122, 1261 (2006).
25.C. W. Gear, “Simultaneous numerical solution of differential–algebraic equations,” IEEE Trans. Circuit Theory 18, 89 (1971).
26.C.-J. Hsu, W.-T. Hsieh, A. Waldman, F. Clarke, E. S. Huseby, J. K. Burkhardt, and T. Baumgart, “Ligand mobility modulates immunological synapse formation and T cell activation,” PLoS One 7, e32398 (2012).
27.B. Favier, N. J. Burroughs, L. Wedderburn, and S. Valitutti, “TCR dynamics on the surface of the living T cell,” Int. Immunol. 13, 15251532 (2001).
28.R. Simson, E. Wallraff, J. Faix, J. Niewöhner, and G. Gerisch, “Membrane bending modulus and adhesion energy of wild-type and mutant cells of dictyostelium lacking talin or cortexillins,” Biophys. J. 74, 514 (1998).

Data & Media loading...


Article metrics loading...



Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd