Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/5/10.1063/1.4919930
1.
1.E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130148 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
2.
2.A. Libchaber, C. Laroche, and S. Fauve, “Period doubling cascade in mercury, a quantitative measurement,” J. Phys., Lett. 43, 211216 (1982).
http://dx.doi.org/10.1051/jphyslet:01982004307021100
3.
3.E. Bodenschatz, W. Pesch, and G. Ahlers, “Recent developments in Rayleigh-Bénard convection,” Annu. Rev. Fluid Mech. 32, 709778 (2000).
http://dx.doi.org/10.1146/annurev.fluid.32.1.709
4.
4.G. Ahlers, S. Grossmann, and D. Lohse, “Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection,” Rev. Mod. Phys. 81, 503537 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.503
5.
5.M. A. Dominguez-Lerma, G. Ahlers, and D. S. Cannell, “Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh-Bénard convection,” Phys. Fluids (1958-1988) 27, 856860 (1984).
http://dx.doi.org/10.1063/1.864714
6.
6.W. V. Malkus, “The heat transport and spectrum of thermal turbulence,” Proc. R. Soc. A 225, 196212 (1954).
http://dx.doi.org/10.1098/rspa.1954.0197
7.
7. Estimated from linear stability about the conduction state but with free “outflow” boundary conditions at the top edge of the boundary layer, that is, .
8.
8.E. A. Spiegel, “Convection in stars I. Basic Boussinesq convection,” Annu. Rev. Astron. Astrophys. 9, 323352 (1971).
http://dx.doi.org/10.1146/annurev.aa.09.090171.001543
9.
9.R. H. Kraichnan, “Turbulent thermal convection at arbitrary Prandtl number,” Phys. Fluids (1958-1988) 5, 13741389 (1962).
http://dx.doi.org/10.1063/1.1706533
10.
10.S. Grossmann and D. Lohse, “Scaling in thermal convection: A unifying theory,” J. Fluid Mech. 407, 2756 (2000).
http://dx.doi.org/10.1017/S0022112099007545
11.
11.R. J. Stevens, E. P. van der Poel, S. Grossmann, and D. Lohse, “The unifying theory of scaling in thermal convection: The updated prefactors,” J. Fluid Mech. 730, 295308 (2013).
http://dx.doi.org/10.1017/jfm.2013.298
12.
12.S. Grossmann and D. Lohse, “Multiple scaling in the ultimate regime of thermal convection,” Phys. Fluids 23, 045108 (2011).
http://dx.doi.org/10.1063/1.3582362
13.
13.X. Chavanne, F. Chilla, B. Castaing, B. Hebral, B. Chabaud, and J. Chaussy, “Observation of the ultimate regime in Rayleigh-Bénard convection,” Phys. Rev. Lett. 79, 3648 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3648
14.
14.X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, and B. Hebral, “Turbulent Rayleigh-Bénard convection in gaseous and liquid He,” Phys. Fluids 13, 13001320 (2001).
http://dx.doi.org/10.1063/1.1355683
15.
15.P.-E. Roche, F. Gauthier, R. Kaiser, and J. Salort, “On the triggering of the ultimate regime of convection,” New J. Phys. 12, 085014 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/085014
16.
16.X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, and G. Ahlers, “Transition to the ultimate state of turbulent Rayleigh-Bénard convection,” Phys. Rev. Lett. 108, 024502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.024502
17.
17.J. Niemela, L. Skrbek, K. Sreenivasan, and R. Donnelly, “Turbulent convection at very high Rayleigh numbers,” Nature 404, 837840 (2000).
http://dx.doi.org/10.1038/35009036
18.
18.J. Niemela and K. R. Sreenivasan, “Turbulent convection at high Rayleigh numbers and aspect ratio 4,” J. Fluid Mech. 557, 411422 (2006).
http://dx.doi.org/10.1017/S0022112006009669
19.
19.L. N. Howard, “Heat transport by turbulent convection,” J. Fluid Mech. 17, 405432 (1963).
http://dx.doi.org/10.1017/S0022112063001427
20.
20.F. H. Busse, “On Howard’s upper bound for heat transport by turbulent convection,” J. Fluid Mech. 37, 457477 (1969).
http://dx.doi.org/10.1017/S0022112069000668
21.
21.C. R. Doering and P. Constantin, “Variational bounds on energy dissipation in incompressible flows. III. Convection,” Phys. Rev. E 53, 5957 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.5957
22.
22.R. R. Kerswell, “New results in the variational approach to turbulent Boussinesq convection,” Phys. Fluids 13, 192209 (2001).
http://dx.doi.org/10.1063/1.1327295
23.
23.S. Plasting and R. Kerswell, “Improved upper bound on the energy dissipation rate in plane Couette flow: The full solution to Busse’s problem and the Constantin–Doering–Hopf problem with one-dimensional background field,” J. Fluid Mech. 477, 363379 (2003).
http://dx.doi.org/10.1017/S0022112002003361
24.
24.J. P. Whitehead and C. R. Doering, “Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries,” Phys. Rev. Lett. 106, 244501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.244501
25.
25.F. Waleffe, “Homotopy of exact coherent structures in plane shear flows,” Phys. Fluids 15, 15171543 (2003).
http://dx.doi.org/10.1063/1.1566753
26.
26.P. R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions,” J. Comput. Phys. 96, 297324 (1991).
http://dx.doi.org/10.1016/0021-9991(91)90238-G
27.
27.M. Charalambides and F. Waleffe, “Gegenbauer tau methods with and without spurious eigenvalues,” SIAM J. Numer. Anal. 47, 4868 (2008).
http://dx.doi.org/10.1137/070704228
28.
28.G. Kawahara, M. Uhlmann, and L. van Veen, “The significance of simple invariant solutions in turbulent flows,” Annu. Rev. Fluid Mech. 44, 203225 (2012).
http://dx.doi.org/10.1146/annurev-fluid-120710-101228
29.
29.B. Wen, G. Chini, R. R. Kerswell, and C. Doering, private communication (2015).
30.
30.J. Wang and F. Waleffe, private communication (2004).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/5/10.1063/1.4919930
Loading
/content/aip/journal/pof2/27/5/10.1063/1.4919930
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/5/10.1063/1.4919930
2015-05-07
2016-12-03

Abstract

Steady but generally unstable solutions of the 2D Boussinesq equations are obtained for no-slip boundary conditions and Prandtl number 7. The primary solution that bifurcates from the conduction state at Rayleigh number ≈ 1708 has been calculated up to ≈ 5.106 and its Nusselt number is ∼ 0.143  0.28 with a delicate spiral structure in the temperature field. Another solution that maximizes over the horizontal wavenumber has been calculated up to = 109 and scales as ∼ 0.115  0.31 for 107 < ≤ 109, quite similar to 3D turbulent data that show ∼ 0.105  0.31 in that range. The optimum solution is a simple yet multi-scale coherent solution whose horizontal wavenumber scales as 0.133  0.217. That solution is unstable to larger scale perturbations and in particular to mean shear flows, yet it appears to be relevant as a backbone for turbulent solutions, possibly setting the scale, strength, and spacing of elemental plumes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/5/1.4919930.html;jsessionid=fO_S-uaUodBtgi4xGBvzugNl.x-aip-live-03?itemId=/content/aip/journal/pof2/27/5/10.1063/1.4919930&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/5/10.1063/1.4919930&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/5/10.1063/1.4919930'
Right1,Right2,Right3,