Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/6/10.1063/1.4922864
1.
1.M. Shin and D. L. Koch, “Rotational and translational dispersion of fibres in isotropic turbulent flows,” J. Fluid Mech. 540, 143 (2005).
http://dx.doi.org/10.1017/S0022112005005690
2.
2.A. Pumir and M. Wilkinson, “Orientation statistics of small particles in turbulence,” New J. Phys. 13, 093030 (2011).
http://dx.doi.org/10.1088/1367-2630/13/9/093030
3.
3.L. Chevillard and C. Meneveau, “Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence,” J. Fluid Mech. 737, 571 (2013).
http://dx.doi.org/10.1017/jfm.2013.580
4.
4.M. Byron, J. Einarsson, K. Gustavsson, G. Voth, B. Mehlig, and E. Variano, “Shape-dependence of particle rotation in isotropic turbulence,” Phys. Fluids 27, 035101 (2015).
http://dx.doi.org/10.1063/1.4913501
5.
5.K. Gustavsson, J. Einarsson, and B. Mehlig, “Tumbling of small axisymmetric particles in random and turbulent flows,” Phys. Rev. Lett. 112, 014501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.014501
6.
6.R. Ni, N. T. Ouellette, and G. A. Voth, “Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence,” J. Fluid Mech. 743, R3 (2014).
http://dx.doi.org/10.1017/jfm.2014.32
7.
7.G. G. Marcus, S. Parsa, S. Kramel, R. Ni, and G. A. Voth, “Measurements of the solid-body rotation of anisotropic particles in 3D turbulence,” New J. Phys. 16, 102001 (2014).
http://dx.doi.org/10.1088/1367-2630/16/10/102001
8.
8.S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109, 134501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.134501
9.
9.R. Ni, S. Kramel, N. T. Ouellette, and G. A. Voth, “Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence,” J. Fluid Mech. 766, 202 (2015).
http://dx.doi.org/10.1017/jfm.2015.16
10.
10.C. Siewert, R. P. J. Kunnen, M. Meinke, and W. Schröder, “Orientation statistics and settling velocity of ellipsoids in decaying turbulence,” Atmos. Res. 142, 45 (2014).
http://dx.doi.org/10.1016/j.atmosres.2013.08.011
11.
11.C. Siewert, R. P. J. Kunnen, and W. Schröder, “Collision rates of small ellipsoids settling in turbulence,” J. Fluid Mech. 758, 686 (2014).
http://dx.doi.org/10.1017/jfm.2014.554
12.
12.H. Zhang, G. Ahmadi, F.-G. Fan, and J. B. McLaughlin, “Ellipsoidal particles transport and deposition in turbulent channel flows,” Int. J. Multiphase Flow 27, 971 (2001).
http://dx.doi.org/10.1016/S0301-9322(00)00064-1
13.
13.P. H. Mortensen, H. I. Andersson, J. J. J. Gillissen, and B. J. Boersma, “Dynamics of prolate ellipsoidal particles in a turbulent channel flow,” Phys. Fluids 20, 093302 (2008).
http://dx.doi.org/10.1063/1.2975209
14.
14.C. Marchioli, M. Fantoni, and A. Soldati, “Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow,” Phys. Fluids 22, 033301 (2010).
http://dx.doi.org/10.1063/1.3328874
15.
15.C. Marchioli and A. Soldati, “Rotation statistics of fibers in wall shear turbulence,” Acta Mech. 224, 2311 (2013).
http://dx.doi.org/10.1007/s00707-013-0933-z
16.
16.L. Zhao, C. Marchioli, and H. I. Andersson, “Slip velocity of rigid fibers in turbulent channel flow,” Phys. Fluids 26, 063302 (2014).
http://dx.doi.org/10.1063/1.4881942
17.
17.L. H. Zhao, H. I. Andersson, and J. J. J. Gillissen, “On inertial effects of long fibers in wall turbulence: Fiber orientation and fiber stresses,” Acta Mech. 224, 2375 (2013).
http://dx.doi.org/10.1007/s00707-013-0920-4
18.
18.N. R. Challabotla, L. Zhao, and H. I. Andersson, “Orientation and rotation of inertial disk particles in wall turbulence,” J. Fluid Mech. 766, R2 (2015).
http://dx.doi.org/10.1017/jfm.2015.38
19.
19.M. Manhart, “Rheology of suspensions of rigid-rod like particles in turbulent channel flow,” J. Non-Newtonian Fluid Mech. 112, 269 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00105-8
20.
20.J. S. Paschkewitz, C. D. Dimitropoulos, Y. X. Hou, V. S. R. Somandepalli, M. G. Mungal, E. S. G. Shaqfeh, and P. Moin, “An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rodlike polymer,” Phys. Fluids 17, 085101 (2005).
http://dx.doi.org/10.1063/1.1993307
21.
21.J. J. J. Gillissen, B. J. Boersma, P. H. Mortensen, and H. I. Andersson, “On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow,” Phys. Fluids 19, 035102 (2007).
http://dx.doi.org/10.1063/1.2437824
22.
22.G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. A 102, 161 (1922).
http://dx.doi.org/10.1098/rspa.1922.0078
23.
23.H. I. Andersson, L. Zhao, and E. A. Variano, “On the anisotropic vorticity in turbulent channel flows,” ASME J. Fluids Eng. 137, 084503 (2015).
http://dx.doi.org/10.1115/1.4030003
24.
24.G. A. Voth, “Disks aligned in a turbulent channel,” J. Fluid Mech. 772, 1 (2015).
http://dx.doi.org/10.1017/jfm.2015.144
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/6/10.1063/1.4922864
Loading
/content/aip/journal/pof2/27/6/10.1063/1.4922864
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/6/10.1063/1.4922864
2015-06-22
2016-12-04

Abstract

The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblate spheroids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/6/1.4922864.html;jsessionid=IxOC9GJpuCSqXftngK8_c0n-.x-aip-live-02?itemId=/content/aip/journal/pof2/27/6/10.1063/1.4922864&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/6/10.1063/1.4922864&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/6/10.1063/1.4922864'
Right1,Right2,Right3,