Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/6/10.1063/1.4923314
1.
1.C. P. Ellington, C. van den Berg, A. P. Willmott, and A. L. R. Thomas, “Leading-edge vortices in insect flight,” Nature 384, 626630 (1996).
http://dx.doi.org/10.1038/384626a0
2.
2.M. H. Dickinson, F.-O. Lehmann, and S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” Science 284, 19541960 (1999).
http://dx.doi.org/10.1126/science.284.5422.1954
3.
3.G. Spedding, M. Rosén, and A. Hedenström, “A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds,” J. Exp. Biol. 206, 23132344 (2003).
http://dx.doi.org/10.1242/jeb.00423
4.
4.J. M. Birch and M. H. Dickinson, “The influence of wingwake interactions on the production of aerodynamic forces in flapping flight,” J. Exp. Biol. 206, 22572272 (2003).
http://dx.doi.org/10.1242/jeb.00381
5.
5.A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207, 42994323 (2004).
http://dx.doi.org/10.1242/jeb.01262
6.
6.D. R. Warrick, B. W. Tobalske, and D. R. Powers, “Aerodynamics of the hovering hummingbird,” Nature 435, 10941097 (2005).
http://dx.doi.org/10.1038/nature03647
7.
7.R. Ramamurti and W. C. Sandberg, “A three-dimensional computational study of the aerodynamic mechanisms of insect flight,” J. Exp. Biol. 205, 15071518 (2002).
8.
8.F. O. Minotti, “Unsteady two-dimensional theory of a flapping wing,” Phys. Rev. E 66, 051907 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.051907
9.
9.M. Sun and J. Tang, “Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion,” J. Exp. Biol. 205, 5570 (2002).
10.
10.M. Sun and S. L. Lan, “A computational study of the aerodynamic forces and power requirements of dragonfly (aeschna juncea) hovering,” J. Exp. Biol. 207, 18871901 (2004).
http://dx.doi.org/10.1242/jeb.00969
11.
11.Z. J. Wang, “Two dimensional mechanism for insect hovering,” Phys. Rev. Lett. 85, 22162219 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2216
12.
12.Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” J. Fluid Mech. 410, 323341 (2000).
http://dx.doi.org/10.1017/S0022112099008071
13.
13.Z. J. Wang, J. M. Birch, and M. H. Dickinson, “Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments,” J. Exp. Biol. 207, 449460 (2004).
http://dx.doi.org/10.1242/jeb.00739
14.
14.S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol. 206, 41914208 (2003).
http://dx.doi.org/10.1242/jeb.00663
15.
15.Z. J. Wang, “Dissecting insect flight,” Annu. Rev. Fluid Mech. 37, 183210 (2005).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
16.
16.M. Sun, “Insect flight dynamics: Stability and control,” Rev. Mod. Phys. 86, 615646 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.615
17.
17.M. Sun and Y. Xiong, “Dynamic flight stability of a hovering bumblebee,” J. Exp. Biol. 208, 447459 (2005).
http://dx.doi.org/10.1242/jeb.01407
18.
18.M. Sun, J. Wang, and Y. Xiong, “Dynamic flight stability of hovering insects,” Acta Mech. Sin. 23, 231246 (2007).
http://dx.doi.org/10.1007/s10409-007-0068-3
19.
19.I. Faruque and J. S. Humbert, “Dipteran insect flight dynamics. Part 2: Lateral–directional motion about hover,” J. Theor. Biol. 265, 306313 (2010).
http://dx.doi.org/10.1016/j.jtbi.2010.05.003
20.
20.B. Liu, L. Ristroph, A. Weathers, S. Childress, and J. Zhang, “Intrinsic stability of a body hovering in an oscillating airflow,” Phys. Rev. Lett. 108, 068103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068103
21.
21.R. Dudley, “Mechanisms and implications of animal flight maneuverability,” Integr. Comp. Biol. 42, 135140 (2002).
http://dx.doi.org/10.1093/icb/42.1.135
22.
22.L. Ristroph, A. J. Bergou, G. Ristroph, K. Coumes, G. J. Berman, J. Guckenheimer, Z. J. Wang, and I. Cohen, “Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles,” Proc. Natl. Acad. Sci. U. S. A. 107, 48204824 (2010).
http://dx.doi.org/10.1073/pnas.1000615107
23.
23.J. A. Gillies, A. L. R. Thomas, and G. K. Taylor, “Soaring and manoeuvring flight of a steppe eagle aquila nipalensis,” J. Avian Biol. 42, 377386 (2011).
http://dx.doi.org/10.1111/j.1600-048X.2011.05105.x
24.
24.L. Ristroph, G. Ristroph, S. Morozova, A. J. Bergou, S. Chang, J. Guckenheimer, Z. J. Wang, and I. Cohen, “Active and passive stabilization of body pitch in insect flight,” J. R. Soc., Interface 10, 20130237 (2013).
http://dx.doi.org/10.1098/rsif.2013.0237
25.
25.S. Childress, N. Vandenberghe, and J. Zhang, “Hovering of a passive body in an oscillating airflow,” Phys. Fluids 18, 117103 (2006).
http://dx.doi.org/10.1063/1.2371123
26.
26.A. Weathers, B. Folie, B. Liu, S. Childress, and J. Zhang, “Hovering of a rigid pyramid in an oscillatory airflow,” J. Fluid Mech. 650, 415425 (2010).
http://dx.doi.org/10.1017/S0022112010000583
27.
27.M. A. Jones, “The separated flow of an inviscid fluid around a moving flat plate,” J. Fluid Mech. 496, 405441 (2003).
http://dx.doi.org/10.1017/S0022112003006645
28.
28.R. Krasny, “Desingularization of periodic vortex sheet roll-up,” J. Comput. Phys. 65, 292313 (1986).
http://dx.doi.org/10.1016/0021-9991(86)90210-X
29.
29.M. Nitsche and R. Krasny, “A numerical study of vortex ring formation at the edge of a circular tube,” J. Fluid Mech. 276, 139161 (1994).
http://dx.doi.org/10.1017/S0022112094002508
30.
30.M. A. Jones and M. J. Shelley, “Falling cards,” J. Fluid Mech. 540, 393425 (2005).
http://dx.doi.org/10.1017/S0022112005005859
31.
31.S. Alben and M. J. Shelley, “Flapping states of a flag in an inviscid fluid: Bistability and the transition to chaos,” Phys. Rev. Lett. 100, 074301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.074301
32.
32.S. Michelin, S. G. Llewellyn Smith, and B. J. Glover, “Vortex shedding model of a flapping flag,” J. Fluid Mech. 617, 110 (2008).
http://dx.doi.org/10.1017/S0022112008004321
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/6/10.1063/1.4923314
Loading
/content/aip/journal/pof2/27/6/10.1063/1.4923314
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/6/10.1063/1.4923314
2015-06-30
2016-12-04

Abstract

Insects and birds are often faced by opposing requirements for agile and stable flight. Here, we explore the interplay between aerodynamic effort, maneuverability, and stability in a model system that consists of a Λ-shaped flyer hovering in a vertically oscillating airflow. We determine effective conditions that lead to periodic hovering in terms of two parameters: the flyer’s shape (opening angle) and the effort (flow acceleration) needed to keep the flyer aloft. We find optimal shapes that minimize effort. We then examine hovering stability and observe a transition from unstable, yet maneuverable, to stable hovering. Interestingly, this transition occurs at post-optimal shapes, that is, at increased aerodynamic effort. These results have profound implications on the interplay between stability and maneuverability in live organisms as well as on the design of man-made air vehicles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/6/1.4923314.html;jsessionid=AlZ7s-__BAf1XOe9ay_sDQUU.x-aip-live-03?itemId=/content/aip/journal/pof2/27/6/10.1063/1.4923314&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/6/10.1063/1.4923314&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/6/10.1063/1.4923314'
Right1,Right2,Right3,