Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/8/10.1063/1.4929457
1.
1.A. V. Fedorov and J. N. Brown, “Equatorial waves,” in Encyclopedia of Ocean Sciences, edited by J. Steele (Academic Press, New York, 2009), pp. 36793695.
2.
2.G. C. Johnson and M. J. McPhaden, “Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling,” J. Phys. Oceanogr. 31, 839849 (2001).
http://dx.doi.org/10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2
3.
3.A. Constantin and R. S. Johnson, “The dynamics of waves interacting with the Equatorial Undercurrent,” Geophys. Astrophys. Fluid Dyn. 109, 311358 (2015).
http://dx.doi.org/10.1080/03091929.2015.1066785
4.
4.M. F. Cronin and W. S. Kessler, “Near-surface shear flow in the tropical Pacific cold tongue front,” J. Phys. Oceanogr. 39, 12001215 (2009).
http://dx.doi.org/10.1175/2008JPO4064.1
5.
5.F. Santiago-Mandujano and E. Firing, “Mixed-layer shear generated by wind stress in the Central Equatorial Pacific,” J. Phys. Oceanogr. 20, 15761582 (1990).
http://dx.doi.org/10.1175/1520-0485(1990)020<1576:MLSGBW>2.0.CO;2
6.
6.S. A. Maslowe, “Critical layers in shear flows,” Annu. Rev. Fluid Mech. 18, 405432 (1986).
http://dx.doi.org/10.1146/annurev.fl.18.010186.002201
7.
7.W. Alpers, “Ocean internal waves,” in Encyclopedia of Remote Sensing, edited by E. G. Njoku (Springer, New York, 2014), pp. 433437.
8.
8.A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis (SIAM, Philadelphia, 2011).
9.
9.A. F. T. da Silva and D. H. Peregrine, “Steep, steady surface waves on water of finite depth with constant vorticity,” J. Fluid Mech. 195, 281302 (1988).
http://dx.doi.org/10.1017/S0022112088002423
10.
10.G. Falkovich, Fluid Mechanics (Cambridge University Press, Cambridge, 2011).
11.
11.W. Craig, P. Guyenne, and H. Kalisch, “Hamiltonian long-wave expansions for free surfaces and interfaces,” Commun. Pure Appl. Math. 58, 15871641 (2005).
http://dx.doi.org/10.1002/cpa.20098
12.
12.V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,” J. Appl. Mech. Tech. Phys. 9, 190194 (1968).
http://dx.doi.org/10.1007/bf00913182
13.
13.E. Wahlén, “A Hamiltonian formulation of water waves with constant vorticity,” Lett. Math. Phys. 79, 303315 (2007).
http://dx.doi.org/10.1007/s11005-007-0143-5
14.
14.A. Constantin, “The trajectories of particles in Stokes waves,” Invent. Math. 166, 523535 (2006).
http://dx.doi.org/10.1007/s00222-006-0002-5
15.
15.A. Constantin and W. Strauss, “Pressure beneath a Stokes wave,” Commun. Pure Appl. Math. 63, 533557 (2010).
http://dx.doi.org/10.1002/cpa.20299
16.
16.D. Clamond, “Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves,” Philos. Trans. R. Soc., A 370, 15721586 (2012).
http://dx.doi.org/10.1098/rsta.2011.0470
17.
17.M. Umeyama, “Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry,” Philos. Trans. R. Soc., A 370, 16871702 (2012).
http://dx.doi.org/10.1098/rsta.2011.0450
18.
18.M. Umeyama and S. Matsuki, “Measurements of velocity and trajectory of water particle for internal waves in two density layers,” Geophys. Res. Lett. 38, L03612, doi:10.1029/2010GL046419 (2011).
http://dx.doi.org/10.1029/2010GL046419
19.
19.T. L. Chiang and T. Qu, “Subthermocline eddies in the Western Equatorial Pacific as shown by an eddy-resolving OGCM,” J. Phys. Oceanogr. 43, 12411253 (2013).
http://dx.doi.org/10.1175/JPO-D-12-0187.1
20.
20.T. Kakutani and N. Yamasaki, “Solitary waves on a two-layer fluid,” J. Phys. Soc. Jpn. 45, 674679 (1978).
http://dx.doi.org/10.1143/JPSJ.45.674
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/8/10.1063/1.4929457
Loading
/content/aip/journal/pof2/27/8/10.1063/1.4929457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/8/10.1063/1.4929457
2015-08-27
2016-12-10

Abstract

We provide a Hamiltonian formulation for the governing equations describing the two-dimensional nonlinear interaction between coupled surface waves, internal waves, and an underlying current with piecewise constant vorticity, in a two-layered fluid overlying a flat bed. This Hamiltonian structure is a starting point for the derivation of simpler models, which can be obtained systematically by expanding the Hamiltonian in dimensionless parameters. These enable an in-depth study of the coupling between the surface and internal waves, and how both these wave systems interact with the background current.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/8/1.4929457.html;jsessionid=MEuzAvZGnnq1o-6Djz_VarnQ.x-aip-live-06?itemId=/content/aip/journal/pof2/27/8/10.1063/1.4929457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/8/10.1063/1.4929457&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/8/10.1063/1.4929457'
Right1,Right2,Right3,