Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. E. Simpson, Gravity Currents: In the Environment and the Laboratory (Cambridge University Press, Cambridge, UK, 1997).
2.B. Kneller and C. Buckee, “The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications,” Sedimentology 47, 6294 (2000).
3.E. Meiburg and B. Kneller, “Turbidity currents and their deposits,” Annu. Rev. Fluid Mech. 42, 135156 (2010).
4.J. D. Parsons, C. T. Friedrichs, P. A. Traykovski, D. Mohrig, and J. Imran, “The mechanics of marine sediment gravity flows,” in Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy, edited by C. A. Nittrouer, J. A. Austin, M. E. Field, J. Syvitski, and P. L. Wiberg (Blackwell, Oxford, 2007), pp. 275333.
5.I. Klaucke, R. Hesse, and B. F. Ryan, “Seismic stratigraphy of the Northwest Atlantic Mid-Ocean channel: Growth pattern of a mid-ocean channel-levee complex,” Mar. Pet. Geol. 15, 575585 (1998).
6.J. R. Curray, F. J. Emmel, and D. G. Moore, “The bengal fan: Morphology, geometry, stratigraphy, history and processes,” Mar. Pet. Geol. 19, 11911223 (2003).
7.P. Weimer and R. M. Slatt, “Introduction to the petroleum geology of deep water setting,” in AAPG Studies in Geology (American Association of Petroleum Geological, CD-ROM, Tulsa, OK, 2007).
8.E. Gonzalez-Juez, E. Meiburg, T. Tokyay, and G. Constantinescu, “Gravity current flow past a circular cylinder: Forces, wall shear stresses and implications for scour,” J. Fluid Mech. 649, 69102 (2010).
9.T. H. Ellison and J. S. Turner, “Turbulent entrainment in stratified flows,” J. Fluid Mech. 6, 423448 (1959).
10.R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Chapman and Hall/Methuen, 1941).
11.J. D. Iversen and K. R. Rasmussen, “The effect of wind speed and bed slope on sand transport,” Sedimentology 46, 723731 (1999).
12.M. Creyssels, P. Dupont, A. Ould el Moctar, A. Valance, I. Cantat, J. T. Jenkins, J. M. Pasini, and K. R. Rasmussen, “Saltating particles in a turbulent boundary layer: Experiment and theory,” J. Fluid Mech. 625, 4774 (2009).
13.T. D. Ho, A. Valance, P. Dupont, and A. Ould el Moctar, “Aeolian sand transport: Length and height distributions of saltation trajectories,” Aeolian Res. 12, 6574 (2014).
14.United Nations, Desertification: Its Causes and Consequences (Pergamon Press, 1977).
15.A. Grainger, The Threatening Desert: Controlling Desertification (Earthscan Publications Ltd, 1990).
16.J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, 2000).
17.N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, 2004).
18.K. K. Rao and P. R. Nott, An Introduction to Granular Flow (Cambridge University Press, 2008).
19.B. Andreotti, Y. Forterre, and O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, 2013).
20.J. F. Kok, E. J. R. Parteli, T. I. Michaels, and D. Bou Karam, “The physics of wind-blown sand and dust,” Rep. Prog. Phys. 75, 106901 (2012).
21.F. Charru, B. Andreotti, and P. Claudin, “Sand ripples and dunes,” Annu. Rev. Fluid Mech. 45, 469493 (2013).
22.J. Ferry and S. Balachandar, “A fast Eulerian method for disperse two-phase flow,” Int. J. Multiphase Flow 27, 11991226 (2001).
23.F. Necker, C. Haertel, L. Kleiser, and E. Meiburg, “High-resolution simulations of particle-driven gravity currents,” Int. J. Multiphase Flow 28, 279300 (2002).
24.F. Necker, C. Haertel, L. Kleiser, and E. Meiburg, “Mixing and dissipation in particle-laden gravity currents,” J. Fluid Mech. 545, 339372 (2005).
25.S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flows,” Annu. Rev. Fluid Mech. 42, 111133 (2010).
26.F. Blanchette, M. Strauss, E. Meiburg, B. Kneller, and M. Glinsky, “High-resolution numerical simulations of resuspending gravity currents: Conditions for self-sustainment,” J. Geophys. Res., [Oceans] 110, C12022, doi:10.1029/2005JC002927 (2005).
27.M. I. Cantero, M. H. Garcia, and S. Balachandar, “Effect of particle inertia on the dynamics of depositional particulate density currents,” Comput. Geosci. 34, 13071318 (2008).
28.M. M. Nasr-Azadani and E. Meiburg, “Turbidity currents interacting with three-dimensional seafloor topography,” J. Fluid Mech. 745, 409443 (2014).
29.M. P. Almeida, J. S. Andrade, Jr., and H. J. Herrmann, “Aeolian transport layer,” Phys. Rev. Lett. 96, 018001 (2006).
30.J. F. Kok and N. O. Renno, “A comprehensive numerical model of steady state saltation,” J. Geophys. Res., [Atmos.] 114, D17204, doi:10.1029/2009JD011702 (2009).
31.M. V. Carneiro, N. A. M. Araújo, T. Pähtz, and H. J. Herrmann, “Midair collisions enhance saltation,” Phys. Rev. Lett. 111, 058001 (2013).
32.O. Duran, B. Andreotti, and P. Claudin, “Numerical simulation of turbulent sediment transport from bed load to saltation,” Phys. Fluids 24, 103306 (2012).
33.T. Pähtz, A. Omeradžić, M. V. Carneiro, N. A. M. Araújo, and H. J. Herrmann, “Discrete element method simulations of the saturation of aeolian sand transport,” Geophys. Res. Lett. 42, 20632070, doi:10.1002/2014GL062945 (2015).
34.J. T. Jenkins and A. Valance, “Periodic trajectories in aeolian sand transport,” Phys. Fluids 26, 073301 (2014).
35.J. M. Ham and G. M. Homsy, “Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions,” Int. J. Multiphase Flow 14, 533546 (1988).
36.F. Boyer, E. Guazzelli, and O. Pouliquen, “Unifying suspension and granular rheology,” Phys. Rev. Lett. 107, 188301 (2011).
37.E. Guazzelli and J. F. Morris, A Physical Introduction to Suspension Dynamics, Cambridge Texts in Applied Mathematics (Cambridge University Press, 2012).
38.A. Shields, Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau (Berlin, 1936).
39.M. Garcia and G. Parker, “Experiments on the entrainment of sediment into suspension by a dense bottom current,” J. Geophys. Res. 98, 47934807, doi:10.1029/92JC02404 (1993).
40.F. Charru and H. Mouilleron-Arnould, “Instability of a bed of particles sheared by a viscous flow,” J. Fluid Mech. 452, 303323 (2002).
41.J. T. Jenkins and D. M. Hanes, “Collisional sheet flows of sediment driven by a turbulent fluid,” J. Fluid Mech. 370, 2952 (1998).
42.T. J. Hsu, J. T. Jenkins, and P. L.-F. Liu, “On two-phase sediment transport: Sheet flow of massive particles,” Proc. R. Soc. A 460, 22232250 (2004).
43.D. Berzi, “Analytical solution of collisional sheet flows,” J. Hydraul. Eng. 137, 12001207 (2011).
44.D. Berzi and L. Fraccarollo, “Inclined, collisional sediment transport,” Phys. Fluids 25, 106601106611 (2013).
45.T. Revil-Baudard, J. Chauchat, D. Hurther, and P.-A. Barraud, “Investigation of sheet-flow processes based on novel acoustic high-resolution velocity and concentration measurements,” J. Fluid Mech. 767, 130 (2015).
46.M. Shringarpure, M. I. Cantero, and S. Balachandar, “Dynamics of complete turbulence suppression in turbidity currents driven by monodisperse suspensions of sediment,” J. Fluid Mech. 712, 384417 (2012).
47.A. Aliseda, A. Cartellier, F. Hainaux, and J. C. Lasheras, “Effect of preferential concentration on the settling velocity of heavy particles in homogenous isotropic turbulence,” J. Fluid Mech. 468, 77105 (2002).
48.T. Bosse, L. Kleiser, and E. Meiburg, “Small particles in homogenous turbulence: Settling velocity enhancement by two-way coupling,” Phys. Fluids 18, 027102 (2006).
49.P. Burns and E. Meiburg, “Sediment-laden fresh water above salt water: Non-linear simulations,” J. Fluid Mech. 762, 156195 (2015).
50.E. Guazzelli and J. Hinch, “Fluctuations and instability in sedimentation,” Annu. Rev. Fluid Mech. 43, 97116 (2011).
51.S. Mitha, M. Q. Tran, B. T. Werner, and P. K. Haff, “The grain-bed impact process in aeolian saltation,” Acta Mech. 63, 267278 (1986).
52.B. B. Willetts and M. A. Rice, “Collision of quartz grains with a sand bed: The influence of incident angle,” Earth Surf. Processes Landforms 14, 719730 (1989).
53.M. A. Rice, B. B. Willetts, and I. K. McEwan, “Observations of collisions of saltating grains with a granular bed from high-speed cine-film,” Sedimentology 43, 2131 (1996).
54.L. Oger, M. Ammi, A. Valance, and B. Beladjine, “Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings,” Eur. Phys. J. E 17, 467476 (2005).
55.D. Beladjine, M. Ammi, L. Oger, A. Valance, and D. Bideau, “An experimental study of the collision process of a grain on a two-dimensional granular bed,” Phys. Rev. E 75, 6130561317 (2007).
56.J. M. Pasini and J. T. Jenkins, “Aeolian transport with collisional suspension,” Philos. Trans. R. Soc., A 363, 16251646 (2005).
57.J. T. Jenkins, I. Cantat, and A. Valance, “Continuum model for steady, fully developed saltation above a horizontal particle bed,” Phys. Rev. E 82, 020301 (2010).
58.R. Glowinski, T. W. Pan, and T. I. Hesla, “A distributed Lagrange multiplier fictitious domain method for particulate flows,” Int. J. Multiphase Flow 25, 755794 (1999).
59.S. L. Dance and M. R. Maxey, “Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow,” J. Comput. Phys. 189, 212238 (2003).
60.M. Uhlmann, “An immersed boundary method with direct forcing for the simulation of particulate flows,” J. Comput. Phys. 209, 448476 (2005).
61.F. Lucci, A. Ferrante, and S. Elghobashi, “Modulation of isotropic turbulence by particles of Taylor length-scale size,” J. Fluid Mech. 650, 555 (2010).
62.K. R. Rasmussen and M. Sørensen, “The vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling,” J. Geophys. Res. 113, F02S12, doi:10.1029/2007jf000774 (2008).
63.J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531555 (2010).
64.P. Nalpanis, J. Hunt, and C. Barrett, “Saltating particles over flat beds,” J. Fluid Mech. 251, 661685 (1993).
65.W. Zhang, J.-H. Kang, and S.-J. Lee, “Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer,” Geomorphology 86, 320331 (2007).
66.D. J. Sherman, B. Li, E. J. Farrell, J. T. Ellis, W. D. Cox, L. P. Maia, and P. H. G. O. Sousa, “Measuring aeolian saltation: A comparison of sensors,” J. Coastal Res., Spec. Issue 59, 280290 (2011).
67.K. Kroy, G. Sauermann, and H. J. Herrmann, “Minimal model for sand dunes,” Phys. Rev. Lett. 88, 054301 (2002).
68.A. Baas and D. Sherman, “Formation and behavior of aeolian streamers,” J. Geophys. Res. 110, F03011, doi:10.1029/2004jf000270 (2005).
69.E. Hopfinger, “Snow avalanche motion and related phenomena,” Annu. Rev. Fluid Mech. 15, 4776 (1983).
70.N. M. Vriend, J. N. McElwaine, and B. Sovilla, “High-resolution radar measurements of snow avalanches,” Geophys. Res. Lett. 40, 727731, doi:10.1002/grl.50134 (2013).
71.M. Sorensen and I. McEwan, “On the effect of mid-air collisions on aeolian saltation,” Sedimentology 43, 6576 (1996).
72.O. Duran, P. Claudin, and B. Andreotti, “Direct numerical simulations of aeolian sand ripples,” PNAS 111, 1566515668 (2014).
73.B. Andreotti, P. Claudin, and S. Douady, “Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans,” Eur. Phys. J. B 28, 321 (2002).
74.A. Valance and V. Langlois, “Ripple formation over a sand bed submitted to a laminar shear flow,” Eur. Phys. J. B 43, 283294 (2005).
75.D. Mohrig and J. G. Marr, “Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments,” Mar. Pet. Geol. 20, 883899 (2003).
76.A. Elverhoi, D. Issler, and F. V. De Blasio, “Emerging insights into the dynamics of submarine debris flows,” Nat. Hazards Earth Syst. Sci. 5, 633648 (2005).
77.M. Felix and J. Peakall, “Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments,” Sedimentology 53, 107123 (2006).
78.S. Balasubramanian, S. I. Voropayev, and H. J. S. Fernando, “Grain sorting and decay of sand ripples under oscillatory flow and turbulence,” J. Turbul. 9, 119 (2008).
79.G. Postma, M. G. Kleinhans, P. Th. Meijer, and J. T. Eggenhuisen, “Sediment transport in analogue flume models compared with real-world sedimentary systems: A new look at scaling evolution of sedimentary systems in a flume,” Sedimentology 55, 15411557 (2008).
80.J. L. Best, R. A. Kostaschuk, J. Peakall, P. V. Villard, and M. Franklin, “Whole flow field dynamics and velocity pulsing within natural sediment-laden underflows,” Geology 33, 765768 (2005).
81.G. Parker, M. Garcia, Y. Fukushima, and W. Yu, “Experiments on turbidity currents over an erodible bed,” J. Hydraul. Eng. 52, 123147 (1987).
82.E. Lajeunesse, L. Malverti, and F. Charru, “Bed load transport in turbulent flow at the grain scale: Experiments and modeling,” J. Geophys. Res. 115, F04001, doi:10.1029/2009jf001628 (2010).
83.M. W. Schmeeckle and J. M. Nelson, “Direct numerical simulation of bedload transport using a local, dynamic boundary condition,” Sedimentology 50, 279301 (2003).
84.C. Escauriaza and F. Sotiropoulos, “Lagrangian model of bed-load transport in turbulent junction flows,” J. Fluid Mech. 666, 3676 (2011).
85.W. Y. Hsu, H. H. Hwung, and T. J. Hsu, “An experimental and numerical investigation on wave-mud interactions,” J. Geophys. Res., [Oceans] 118, 11261141, doi:10.1002/jgrc.20103 (2013).
86.C. S. Carroll, M. Y. Louge, and B. Turnbull, “Frontal dynamics of powder snow avalanches,” J. Geophys. Res. 118, 913924, doi:10.1002/jgrf.20068 (2013).
87.P. Aussillous, J. Chauchat, and M. Pailha, “Investigation of the mobile granular layer in bedload transport by laminar shearing flows,” J. Fluid Mech. 736, 594615 (2013).
88.M. Colombini, “A decade’s investigation of the stability of erodible stream beds,” J. Fluid Mech. 756, 14 (2014).

Data & Media loading...


Article metrics loading...



The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd