Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/27/9/10.1063/1.4931915
1.
1.C. Huh and L. Scriven, “Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,” J. Colloid Interface Sci. 35, 85101 (1971).
http://dx.doi.org/10.1016/0021-9797(71)90188-3
2.
2.E. B. Dussan V, “The moving contact line: The slip boundary condition,” J. Fluid Mech. 77, 665684 (1976).
http://dx.doi.org/10.1017/S0022112076002838
3.
3.D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81, 739 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.739
4.
4.E. Kirkinis and S. H. Davis, “Hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line,” Phys. Rev. Lett. 110, 234503 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.234503
5.
5.P. Thompson and M. Robbins, “Simulations of contact-line motion: Slip and the dynamic contact angle,” Phys. Rev. Lett. 63, 766769 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.766
6.
6.T. Qian, X.-P. Wang, and P. Sheng, “Power-law slip profile of the moving contact line in two-phase immiscible flows,” Phys. Rev. Lett. 93, 094501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.094501
7.
7.Q. Chen, E. Ramé, and S. Garoff, “The velocity field near moving contact lines,” J. Fluid Mech. 337, 4966 (1997).
http://dx.doi.org/10.1017/S0022112096004806
8.
8.S. Guo, M. Gao, X. Xiong, Y. J. Wang, X. Wang, P. Sheng, and P. Tong, “Direct measurement of friction of a fluctuating contact line,” Phys. Rev. Lett. 111, 026101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.026101
9.
9.P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447 (2006).
http://dx.doi.org/10.1017/S0022112006002229
10.
10.C. D. Meinhart and S. T. Wereley, “Micro particle image velocimetry,” in Microscale Diagnostic Techniques, edited by K. S. Breuer (Springer, 2005).
11.
11.See supplementary material at http://dx.doi.org/10.1063/1.4931915 for tabulated experimental data obtained using flood illumination. FilesDATA - flood-advancing.txt and DATA - flood-receding.txt contain the velocities associated with the advancing and receding contact line motions. Each file tabulates the velocity vs. distance from the contact in (i) the direction parallel to the substrate (measured) and (ii) normal to the substrate (computed using the continuity equation).[Supplementary Material]
12.
12.R. G. Cox, “Inertial and viscous effects on dynamic contact angles,” J. Fluid Mech. 357, 249278 (1998).
http://dx.doi.org/10.1017/S0022112097008112
13.
13.R. G. Cox, “The dynamics of the spreading of liquids on a solid surface. Part 1. viscous flow,” J. Fluid Mech. 168, 169194 (1986).
http://dx.doi.org/10.1017/S0022112086000332
14.
14.H. F. Li and M. Yoda, “Multilayer nano-particle image velocimetry (MnPIV) imn microscale Poiseuille flows,” Meas. Sci. Technol. 19, 075402 (2008).
http://dx.doi.org/10.1088/0957-0233/19/7/075402
15.
15.C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101, 114503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.114503
16.
16.Z. Li, L. D’eramo, C. Lee, F. Monti, M. Yonger, P. Tabeling, B. Chollet, B. Bresson, and Y. Tran, “Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking,” J. Fluid Mech. 766, 147171 (2015).
http://dx.doi.org/10.1017/jfm.2015.12
17.
17.J. R. T. Seddon and D. Lohse, “Nanobubbles and micropancakes: Gaseous domains on immersed substrates,” J. Phys.: Condens. Matter 23, 133001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/13/133001
18.
18.C. Choi, K. Westin, and K. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels,” Phys. Fluids 15, 28972902 (2003).
http://dx.doi.org/10.1063/1.1605425
19.
19.P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E 71, 035303 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.035303
20.
20.L. Léger, H. Hervet, G. Massey, and E. Durliat, “Wall slip in polymer melts,” J. Phys.: Condens. Matter 9, 7719 (1997).
http://dx.doi.org/10.1088/0953-8984/9/37/006
21.
21.R. Pit, H. Hervet, and L. Léger, “Direct experimental evidence of slip in hexadecane: Solid interfaces,” Phys. Rev. Lett. 85, 980983 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.980
22.
22.Y. Zhu and S. Granick, “Rate-dependent slip of Newtonian liquid at smooth surfaces,” Phys. Rev. Lett. 87, 096105 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.096105
23.
23.D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14, L9L12 (2002).
http://dx.doi.org/10.1063/1.1432696
24.
24.H. B. van Lengerich and P. H. Steen, “Energy dissipation and the contact-line region of a spreading bridge,” J. Fluid Mech. 703, 111141 (2012).
http://dx.doi.org/10.1017/jfm.2012.199
25.
25.P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature 389, 360362 (1997).
http://dx.doi.org/10.1038/39475
26.
26.T. Qian, X.-P. Wang, and P. Sheng, “Molecular scale contact line hydrodynamics of immiscible flows,” Phys. Rev. E 68, 016306 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.016306
http://aip.metastore.ingenta.com/content/aip/journal/pof2/27/9/10.1063/1.4931915
Loading
/content/aip/journal/pof2/27/9/10.1063/1.4931915
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/27/9/10.1063/1.4931915
2015-09-29
2016-09-26

Abstract

Two different particle tracking velocimetry techniques are used to measure the fluid velocities close to the substrate in the vicinity of both receding and advancing contact lines. The slip velocity is found to be as much as 60% of the substrate speed near the contact line and persists as far as 10 m from the liquid-gas interface. The estimated slip length near the contact line singularity requires a measurement of the shear rate close the substrate which depends strongly on the spatial resolution of the measurement technique. The slip length is found to be approximately 5 m when flood illumination is used and approximately 500 nm when total internal reflection fluorescence illumination is used.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/27/9/1.4931915.html;jsessionid=RSjHbsrF_JOSkPxrUODftBDB.x-aip-live-02?itemId=/content/aip/journal/pof2/27/9/10.1063/1.4931915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/27/9/10.1063/1.4931915&pageURL=http://scitation.aip.org/content/aip/journal/pof2/27/9/10.1063/1.4931915'
Right1,Right2,Right3,