Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/1/10.1063/1.4938239
1.
1.E. J. Hinch and L. G. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92, 591608 (1979).
http://dx.doi.org/10.1017/S002211207900077X
2.
2.A. L. Yarin, O. Gottlieb, and I. V. Roisman, “Chaotic rotation of triaxial ellipsoids in simple shear flow,” J. Fluid Mech. 340, 83100 (1997).
http://dx.doi.org/10.1017/S0022112097005260
3.
3.J. R. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Springer, 1965).
4.
4.S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann Series in Chemical Engineering (Butterworth-Heinemann, Boston, 1991).
5.
5.G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. A 102, 161179 (1922).
http://dx.doi.org/10.1098/rspa.1922.0078
6.
6.F. P. Bretherton, “The motion of rigid particles in a shear flow at low Reynolds number,” J. Fluid Mech. 14, 284304 (1962).
http://dx.doi.org/10.1017/S002211206200124X
7.
7.G. I. Taylor, “The motion of ellipsoidal particles in a viscous fluid,” Proc. R. Soc. London, Ser. A 103, 5861 (1923).
http://dx.doi.org/10.1098/rspa.1923.0040
8.
8.A. Karnis, H. L. Goldsmith, and S. G. Mason, “The flow of suspensions through tubes. V. Inertial effects,” Can. J. Chem. Eng. 44, 181193 (1966).
http://dx.doi.org/10.1002/cjce.5450440401
9.
9.G. Subramanian and D. L. Koch, “Inertial effects on fibre motion in simple shear flow,” J. Fluid Mech. 535, 383414 (2005).
http://dx.doi.org/10.1017/S0022112005004829
10.
10.J. Einarsson, F. Candelier, F. Lundell, J. Angilella, and B. Mehlig, “Rotation of a spheroid in a simple shear at small Reynolds number,” Phys. Fluids 27, 063301 (2015).
http://dx.doi.org/10.1063/1.4921543
11.
11.J. Einarsson, F. Candelier, F. Lundell, J. Angilella, and B. Mehlig, “Effect of weak fluid inertia upon Jeffery orbits,” Phys. Rev. E 91, 041002(R) (2015).
http://dx.doi.org/10.1103/PhysRevE.91.041002
12.
12.F. Candelier, J. Einarsson, F. Lundell, B. Mehlig, and J. Angilella, “The role of inertia for the rotation of a nearly spherical particle in a general linear flow,” Phys. Rev. E 91, 053023 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.053023
13.
13.H. Brenner, “Rheology of a dilute suspension of axisymmetric Brownian particles,” Int. J. Multiphase Flow 1, 195341 (1974).
http://dx.doi.org/10.1016/0301-9322(74)90018-4
14.
14.E. J. Hinch and L. G. Leal, “The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles,” J. Fluid Mech. 52, 683712 (1972).
http://dx.doi.org/10.1017/S002211207200271X
15.
15.P. J. Gierszewski and C. E. Chaffey, “Rotation of an isolated triaxial ellipsoid suspended in slow viscous flow,” Can. J. Phys. 56, 611 (1978).
http://dx.doi.org/10.1139/p78-003
16.
16.C. J. Petrie, “The rheology of fibre suspensions,” J. Non-Newtonian Fluid Mech. 87, 369402 (1999).
http://dx.doi.org/10.1016/S0377-0257(99)00069-5
17.
17.S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109, 134501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.134501
18.
18.A. Pumir and M. Wilkinson, “Orientation statistics of small particles in turbulence,” New J. Phys. 13, 093030 (2011).
http://dx.doi.org/10.1088/1367-2630/13/9/093030
19.
19.K. Gustavsson, J. Einarsson, and B. Mehlig, “Tumbling of small axisymmetric particles in random and turbulent flows,” Phys. Rev. Lett. 112, 014501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.014501
20.
20.R. Ni, N. T. Ouelette, and G. A. Voth, “Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence,” J. Fluid Mech. 743, R3 (2014).
http://dx.doi.org/10.1017/jfm.2014.32
21.
21.L. Chevillard and C. Meneveau, “Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence,” J. Fluid Mech. 737, 571 (2013).
http://dx.doi.org/10.1017/jfm.2013.580
22.
22.M. Byron, J. Einarsson, K. Gustavsson, G. Voth, B. Mehlig, and E. Variano, “Shape-dependence of particle rotation in isotropic turbulence,” Phys. Fluids 27, 035101 (2015).
http://dx.doi.org/10.1063/1.4913501
23.
23.M. Wilkinson, V. Bezuglyy, and B. Mehlig, “Fingerprints of random flows,” Phys. Fluids 21, 043304 (2009).
http://dx.doi.org/10.1063/1.3118502
24.
24.V. Bezuglyy, B. Mehlig, and M. Wilkinson, “Poincaré indices of rheoscopic visualisations,” Europhys. Lett. 89, 34003 (2010).
http://dx.doi.org/10.1209/0295-5075/89/34003
25.
25.M. Wilkinson, V. Bezuglyy, and B. Mehlig, “Emergent order in rheoscopic swirls,” J. Fluid Mech. 667, 158 (2011).
http://dx.doi.org/10.1017/S0022112010004441
26.
26.C. Marchioli, M. Fantoni, and A. Soldati, “Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow,” Phys. Fluids 22, 033301 (2010).
http://dx.doi.org/10.1063/1.3328874
27.
27.J. Einarsson, A. Johansson, S. K. Mahato, Y. N. Mishra, J. Angilella, D. Hanstorp, and B. Mehlig, “Periodic and aperiodic tumbling of microrods advected in a microchannel flow,” Acta Mech. 224, 22812289 (2013).
http://dx.doi.org/10.1007/s00707-013-0924-0
28.
28.N. R. Challabotla, L. Zhao, and H. Andersson, “Orientation and rotation of inertial disk particles in wall turbulence,” J. Fluid Mech. 766, R2 (2015).
http://dx.doi.org/10.1017/jfm.2015.38
29.
29.F. Eirich, H. Margaretha, and M. Bunzl, “Untersuchungen über die viskosität von suspensionen und lösungen,” Kolloid-Z. 75, 2037 (1936).
http://dx.doi.org/10.1007/BF01455734
30.
30.R. C. Binder, “The motion of cylindrical particles in viscous flow,” J. Appl. Phys. 10, 711713 (1939).
http://dx.doi.org/10.1063/1.1707254
31.
31.J. Trevelyan and S. G. Mason, “Particle motion in a sheared suspensions. I. Rotations,” J. Colloid Sci. 6, 354367 (1951).
http://dx.doi.org/10.1016/0095-8522(51)90005-0
32.
32.S. G. Mason and R. S. J. Manley, “Particle motions in sheared suspensions: Orientations and interactions of rigid rods,” Proc. R. Soc. London, Ser. A 238, 117131 (1956).
http://dx.doi.org/10.1098/rspa.1956.0207
33.
33.W. Bartok and S. G. Mason, “Particle motion in sheared suspensions,” J. Colloid Sci. 12, 243262 (1957).
http://dx.doi.org/10.1016/0095-8522(57)90010-7
34.
34.H. L. Goldsmith and S. G. Mason, “Particle motions in sheared suspensions. XIII. The spin and rotation of disks,” J. Fluid Mech. 12, 8896 (1962).
http://dx.doi.org/10.1017/s0022112062000051
35.
35.H. L. Goldsmith and S. G. Mason, “The flow of suspensions through tubes. I. Single spheres, rods, and discs,” J. Colloid Sci. 17, 448476 (1962).
http://dx.doi.org/10.1016/0095-8522(62)90056-9
36.
36.E. Anczurowski and S. G. Mason, “Particle motions in sheared suspensions. XXIV. Rotation of rigid spheriods and cylinders,” Trans. Soc. Rheol. 12, 209215 (1968).
http://dx.doi.org/10.1122/1.549106
37.
37.J. B. Harris, M. Nawaz, and J. F. T. Pittman, “Low-Reynolds-number motion of particles with two or three perpendicular planes of symmetry,” J. Fluid Mech. 95, 415429 (1979).
http://dx.doi.org/10.1017/S0022112079001531
38.
38.C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29, 192203 (1990).
http://dx.doi.org/10.1007/BF01331355
39.
39.T. Kaya and H. Koser, “Characterization of hydrodynamics surface interactions of Escherichia coli cell bodies in shear flow,” Phys. Rev. Lett. 103, 138103 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.138103
40.
40.R. Alargova, K. Bhatt, V. Paunov, and O. Velev, “Scalable synthesis of a new class of polymer microrods by a liquid-liquid dispersion technique,” Adv. Mater. 16, 16531657 (2004).
http://dx.doi.org/10.1002/adma.200400112
41.
41.E. P. Lewandowski, J. A. Bernate, P. C. Searson, and K. J. Stebe, “Rotation and alignment of anisotopic particles on nonplanar interfaces,” Langmuir 24, 93029307 (2008).
http://dx.doi.org/10.1021/la801167h
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.4938239 for Figs. S1 to S9 containing experimental data for particles 4 to 12.[Supplementary Material]
43.
43.J. Einarsson, “Angular dynamics of small particles in fluids,” Ph.D. thesis, Department of Physics, University of Gothenburg, 2015.
44.
44.S. H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, 1994).
45.
45.H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980).
46.
46.A. Politi, G. L. Oppo, and R. Badii, “Coexistence of conservative and dissipative behaviour in reversible dynamical systems,” Phys. Rev. A 33, 4055 (1986).
http://dx.doi.org/10.1103/PhysRevA.33.4055
47.
47.A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983).
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/1/10.1063/1.4938239
Loading
/content/aip/journal/pof2/28/1/10.1063/1.4938239
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/1/10.1063/1.4938239
2016-01-07
2016-09-27

Abstract

We describe results of measurements of the orientational motion of glass microrods in a microchannel flow, following the orientational motion of particles with different shapes. We determine how the orientational dynamics depends on the shape of the particle and on its initial orientation. We find that the dynamics depends so sensitively on the degree to which particle axisymmetry is broken that it is difficult to find particles that are sufficiently axisymmetric so that they exhibit periodic tumbling (“Jeffery orbits”). The results of our measurements confirm earlier theoretical analysis predicting sensitive dependence on particle shape and its initial orientation. Our results illustrate the different types of orientational dynamics for asymmetric particles predicted by theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/1/1.4938239.html;jsessionid=VyhKistADTayezaGLk7abeTA.x-aip-live-06?itemId=/content/aip/journal/pof2/28/1/10.1063/1.4938239&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/1/10.1063/1.4938239&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/1/10.1063/1.4938239'
Right1,Right2,Right3,