Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. J. Hinch and L. G. Leal, “Rotation of small non-axisymmetric particles in a simple shear flow,” J. Fluid Mech. 92, 591608 (1979).
2.A. L. Yarin, O. Gottlieb, and I. V. Roisman, “Chaotic rotation of triaxial ellipsoids in simple shear flow,” J. Fluid Mech. 340, 83100 (1997).
3.J. R. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Springer, 1965).
4.S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann Series in Chemical Engineering (Butterworth-Heinemann, Boston, 1991).
5.G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. A 102, 161179 (1922).
6.F. P. Bretherton, “The motion of rigid particles in a shear flow at low Reynolds number,” J. Fluid Mech. 14, 284304 (1962).
7.G. I. Taylor, “The motion of ellipsoidal particles in a viscous fluid,” Proc. R. Soc. London, Ser. A 103, 5861 (1923).
8.A. Karnis, H. L. Goldsmith, and S. G. Mason, “The flow of suspensions through tubes. V. Inertial effects,” Can. J. Chem. Eng. 44, 181193 (1966).
9.G. Subramanian and D. L. Koch, “Inertial effects on fibre motion in simple shear flow,” J. Fluid Mech. 535, 383414 (2005).
10.J. Einarsson, F. Candelier, F. Lundell, J. Angilella, and B. Mehlig, “Rotation of a spheroid in a simple shear at small Reynolds number,” Phys. Fluids 27, 063301 (2015).
11.J. Einarsson, F. Candelier, F. Lundell, J. Angilella, and B. Mehlig, “Effect of weak fluid inertia upon Jeffery orbits,” Phys. Rev. E 91, 041002(R) (2015).
12.F. Candelier, J. Einarsson, F. Lundell, B. Mehlig, and J. Angilella, “The role of inertia for the rotation of a nearly spherical particle in a general linear flow,” Phys. Rev. E 91, 053023 (2015).
13.H. Brenner, “Rheology of a dilute suspension of axisymmetric Brownian particles,” Int. J. Multiphase Flow 1, 195341 (1974).
14.E. J. Hinch and L. G. Leal, “The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles,” J. Fluid Mech. 52, 683712 (1972).
15.P. J. Gierszewski and C. E. Chaffey, “Rotation of an isolated triaxial ellipsoid suspended in slow viscous flow,” Can. J. Phys. 56, 611 (1978).
16.C. J. Petrie, “The rheology of fibre suspensions,” J. Non-Newtonian Fluid Mech. 87, 369402 (1999).
17.S. Parsa, E. Calzavarini, F. Toschi, and G. A. Voth, “Rotation rate of rods in turbulent fluid flow,” Phys. Rev. Lett. 109, 134501 (2012).
18.A. Pumir and M. Wilkinson, “Orientation statistics of small particles in turbulence,” New J. Phys. 13, 093030 (2011).
19.K. Gustavsson, J. Einarsson, and B. Mehlig, “Tumbling of small axisymmetric particles in random and turbulent flows,” Phys. Rev. Lett. 112, 014501 (2014).
20.R. Ni, N. T. Ouelette, and G. A. Voth, “Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence,” J. Fluid Mech. 743, R3 (2014).
21.L. Chevillard and C. Meneveau, “Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence,” J. Fluid Mech. 737, 571 (2013).
22.M. Byron, J. Einarsson, K. Gustavsson, G. Voth, B. Mehlig, and E. Variano, “Shape-dependence of particle rotation in isotropic turbulence,” Phys. Fluids 27, 035101 (2015).
23.M. Wilkinson, V. Bezuglyy, and B. Mehlig, “Fingerprints of random flows,” Phys. Fluids 21, 043304 (2009).
24.V. Bezuglyy, B. Mehlig, and M. Wilkinson, “Poincaré indices of rheoscopic visualisations,” Europhys. Lett. 89, 34003 (2010).
25.M. Wilkinson, V. Bezuglyy, and B. Mehlig, “Emergent order in rheoscopic swirls,” J. Fluid Mech. 667, 158 (2011).
26.C. Marchioli, M. Fantoni, and A. Soldati, “Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow,” Phys. Fluids 22, 033301 (2010).
27.J. Einarsson, A. Johansson, S. K. Mahato, Y. N. Mishra, J. Angilella, D. Hanstorp, and B. Mehlig, “Periodic and aperiodic tumbling of microrods advected in a microchannel flow,” Acta Mech. 224, 22812289 (2013).
28.N. R. Challabotla, L. Zhao, and H. Andersson, “Orientation and rotation of inertial disk particles in wall turbulence,” J. Fluid Mech. 766, R2 (2015).
29.F. Eirich, H. Margaretha, and M. Bunzl, “Untersuchungen über die viskosität von suspensionen und lösungen,” Kolloid-Z. 75, 2037 (1936).
30.R. C. Binder, “The motion of cylindrical particles in viscous flow,” J. Appl. Phys. 10, 711713 (1939).
31.J. Trevelyan and S. G. Mason, “Particle motion in a sheared suspensions. I. Rotations,” J. Colloid Sci. 6, 354367 (1951).
32.S. G. Mason and R. S. J. Manley, “Particle motions in sheared suspensions: Orientations and interactions of rigid rods,” Proc. R. Soc. London, Ser. A 238, 117131 (1956).
33.W. Bartok and S. G. Mason, “Particle motion in sheared suspensions,” J. Colloid Sci. 12, 243262 (1957).
34.H. L. Goldsmith and S. G. Mason, “Particle motions in sheared suspensions. XIII. The spin and rotation of disks,” J. Fluid Mech. 12, 8896 (1962).
35.H. L. Goldsmith and S. G. Mason, “The flow of suspensions through tubes. I. Single spheres, rods, and discs,” J. Colloid Sci. 17, 448476 (1962).
36.E. Anczurowski and S. G. Mason, “Particle motions in sheared suspensions. XXIV. Rotation of rigid spheriods and cylinders,” Trans. Soc. Rheol. 12, 209215 (1968).
37.J. B. Harris, M. Nawaz, and J. F. T. Pittman, “Low-Reynolds-number motion of particles with two or three perpendicular planes of symmetry,” J. Fluid Mech. 95, 415429 (1979).
38.C. A. Stover and C. Cohen, “The motion of rodlike particles in the pressure-driven flow between two flat plates,” Rheol. Acta 29, 192203 (1990).
39.T. Kaya and H. Koser, “Characterization of hydrodynamics surface interactions of Escherichia coli cell bodies in shear flow,” Phys. Rev. Lett. 103, 138103 (2009).
40.R. Alargova, K. Bhatt, V. Paunov, and O. Velev, “Scalable synthesis of a new class of polymer microrods by a liquid-liquid dispersion technique,” Adv. Mater. 16, 16531657 (2004).
41.E. P. Lewandowski, J. A. Bernate, P. C. Searson, and K. J. Stebe, “Rotation and alignment of anisotopic particles on nonplanar interfaces,” Langmuir 24, 93029307 (2008).
42.See supplementary material at for Figs. S1 to S9 containing experimental data for particles 4 to 12.[Supplementary Material]
43.J. Einarsson, “Angular dynamics of small particles in fluids,” Ph.D. thesis, Department of Physics, University of Gothenburg, 2015.
44.S. H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, 1994).
45.H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980).
46.A. Politi, G. L. Oppo, and R. Badii, “Coexistence of conservative and dissipative behaviour in reversible dynamical systems,” Phys. Rev. A 33, 4055 (1986).
47.A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983).

Data & Media loading...


Article metrics loading...



We describe results of measurements of the orientational motion of glass microrods in a microchannel flow, following the orientational motion of particles with different shapes. We determine how the orientational dynamics depends on the shape of the particle and on its initial orientation. We find that the dynamics depends so sensitively on the degree to which particle axisymmetry is broken that it is difficult to find particles that are sufficiently axisymmetric so that they exhibit periodic tumbling (“Jeffery orbits”). The results of our measurements confirm earlier theoretical analysis predicting sensitive dependence on particle shape and its initial orientation. Our results illustrate the different types of orientational dynamics for asymmetric particles predicted by theory.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd