Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/1/10.1063/1.4939001
1.
1.W. Munk and C. Wunsch, “Abyssal recipes II: Energetics of tidal and wind mixing,” Deep Sea Res., Part I 45, 19772010 (1998).
http://dx.doi.org/10.1016/S0967-0637(98)00070-3
2.
2.C. Wunsch and R. Ferrari, “Vertical mixing, energy, and the general circulation of the oceans,” Annu. Rev. Fluid Mech. 36, 281314 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121
3.
3.B. R. Sutherland and K. Yewchuk, “Internal wave tunnelling,” J. Fluid Mech. 511, 125134 (2004).
http://dx.doi.org/10.1017/S0022112004009863
4.
4.J. T. Nault and B. R. Sutherland, “Internal wave transmission in nonuniform flows,” Phys. Fluids 19, 016601 (2007).
http://dx.doi.org/10.1063/1.2424791
5.
5.M. Mathur and T. Peacock, “Internal wave beam propagation in non-uniform stratifications,” J. Fluid Mech. 639, 133152 (2009).
http://dx.doi.org/10.1017/S0022112009991236
6.
6.R. P. Mied, “The occurrence of parametric instabilities in finite-amplitude internal gravity waves,” J. Fluid Mech. 78, 763784 (1976).
http://dx.doi.org/10.1017/S0022112076002735
7.
7.P. G. Drazin, “On the instability of an internal gravity wave,” Proc. R. Soc. A 356, 411432 (1977).
http://dx.doi.org/10.1098/rspa.1977.0142
8.
8.C. R. Koudella and C. Staquet, “Instability mechanisms of a two-dimensional progressive internal gravity wave,” J. Fluid Mech. 548, 165196 (2006).
http://dx.doi.org/10.1017/S0022112005007524
9.
9.M. H. Alford, J. A. Mackinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, “Internal waves across the Pacific,” Geophys. Res. Lett. 34, L24601, doi:10.1029/2007GL031566 (2007).
http://dx.doi.org/10.1029/2007GL031566
10.
10.J. A. MacKinnon, M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, “Parametric subharmonic instability of the internal tide at 29 N,” J. Phys. Oceanogr. 43, 1728 (2013).
http://dx.doi.org/10.1175/JPO-D-11-0108.1
11.
11.J. A. MacKinnon and K. B. Winters, “Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9,” Geophys. Res. Lett. 32, L15605, doi:10.1029/2005GL023376 (2005).
http://dx.doi.org/10.1029/2005GL023376
12.
12.B. Gayen and S. Sarkar, “Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline,” J. Geophys. Res.: Oceans 118, 46894698, doi:10.1002/jgrc.20321 (2013).
http://dx.doi.org/10.1002/jgrc.20321
13.
13.S. Joubaud, J. Munroe, P. Odier, and T. Dauxois, “Experimental parametric subharmonic instability in stratified fluids,” Phys. Fluids 24, 041703 (2012).
http://dx.doi.org/10.1063/1.4706183
14.
14.B. Bourget, T. Dauxois, S. Joubaud, and P. Odier, “Experimental study of parametric subharmonic instability for internal plane waves,” J. Fluid Mech. 723, 120 (2013).
http://dx.doi.org/10.1017/jfm.2013.78
15.
15.P. Flandrin, Time-Frequency/Time-Scale Analysis (Academic, 1999).
16.
16.M. J. Mercier, N. B. Garnier, and T. Dauxois, “Reflection and diffraction of internal waves analyzed with the Hilbert transform,” Phys. Fluids 20, 086601 (2008).
http://dx.doi.org/10.1063/1.2963136
17.
17.F. M. Lee, M. S. Paoletti, H. L. Swinney, and P. J. Morrison, “Experimental determination of radiated internal wave power without pressure field data,” Phys. Fluids 26, 046606 (2014).
http://dx.doi.org/10.1063/1.4871808
18.
18.J. Lighthill, Waves in Fluids (Cambridge University Press, 1978).
19.
19.H. H. Karimi and T. R. Akylas, “Parametric subharmonic instability of internal waves: Locally confined beams versus monochromatic wavetrains,” J. Fluid Mech. 757, 381402 (2014).
http://dx.doi.org/10.1017/jfm.2014.509
20.
20.B. Bourget, H. Scolan, T. Dauxois, M. Le Bars, P. Odier, and S. Joubaud, “Finite-size effects in parametric subharmonic instability,” J. Fluid Mech. 759, 739750 (2014).
http://dx.doi.org/10.1017/jfm.2014.550
21.
21.Q. Zhou and P. J. Diamessis, “Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013).
http://dx.doi.org/10.1063/1.4795407
22.
22.P. J. Diamessis, S. Wunsch, I. Delwiche, and M. P. Richter, “Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline,” Dyn. Atmos. Oceans 66, 110137 (2014).
http://dx.doi.org/10.1016/j.dynatmoce.2014.02.003
23.
23.S. Thorpe, “Langmuir circulation,” Annu. Rev. Fluid Mech. 36, 5579 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.052203.071431
24.
24.J. A. Polton, J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, “Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer,” Geophys. Res. Lett. 35, L13602, doi:10.1029/2008GL033856 (2008).
http://dx.doi.org/10.1029/2008GL033856
25.
25.H. T. Pham, S. Sarkar, and K. A. Brucker, “Dynamics of a stratified shear layer above a region of uniform stratification,” J. Fluid Mech. 630, 191223 (2009).
http://dx.doi.org/10.1017/S0022112009006478
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/1/10.1063/1.4939001
Loading
/content/aip/journal/pof2/28/1/10.1063/1.4939001
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/1/10.1063/1.4939001
2016-01-13
2016-12-11

Abstract

We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially periodic boundary forcing from above of a density stratification comprising a strongly stratified, thin upper layer sitting atop a weakly stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly stratified lower layer. We find that around 10% of the primary waveenergy flux penetrates into the lower layer via this nonlinearwave-wave interaction for the regime we study.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/1/1.4939001.html;jsessionid=drsBCCtlPo2EPh9oF_o9Q0uh.x-aip-live-02?itemId=/content/aip/journal/pof2/28/1/10.1063/1.4939001&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/1/10.1063/1.4939001&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/1/10.1063/1.4939001'
Right1,Right2,Right3,