Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Tennekes and J. L. Lumley, A First Course in Turbulence, 1st ed. (MIT Press, Cambridge, Massachusetts, USA, 1972).
2.S. B. Pope, Turbulent Flows, 1st ed. (Cambridge University Press, Cambridge, UK, 2000).
3.P. A. Durbin and B. A. Pettersson Reif, Statistical Theory and Modeling for Turbulent Flows, 2nd ed. (Wiley, 2010).
4.B. Karlovitz, D. W. Denniston, and F. E. Wells, “Investigation of turbulent flames,” J. Chem. Phys. 19, 541 (1951).
5.P. A. Libby and K. N. C. Bray, “Counter gradient diffusionin premixed turbulent flames,” AIAA J. 19, 205 (1981).
6.J. B. Moss, “Simultaneous measurements of concentration andvelocity in an open premixed turbulent flame,” Combust. Sci. Technol. 22, 119 (1980).
7.A. N. Lipatnikov and J. Chomiak, “Effects of premixed flames on turbulence and turbulent scalar transport,” Prog. Energy Combust. Sci. 36, 1 (2010).
8.K. K. Nomura and S. E. Elghobashi, “The structure of inhomogeneous turbulence in variable density nonpremixed flames,” Theor. Fluid Dyn. 5, 153 (1993).
9.O. N. Boratov, S. E. Elghobashi, and R. Zhong, “On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames,” Phys. Fluids 10(9), 2260 (1996).
10.F. A. Jaberi, D. Livescu, and C. K. Madnia, “Characteristics of chemically reacting compressible homogeneous turbulence,” Phys. Fluids 12(5), 1189 (2000).
11.P. E. Hamlington, A. Y. Poludnenko, and E. S. Oran, “Interactions between turbulence and flames in premixed reacting flows,” Phys. Fluids 23, 125111 (2011).
12.T. C. Treurniet, F. T. M. Nieuwstadt, and B. J. Boersma, “Direct numerical simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modelled by the G-equation,” J. Fluid Mech. 565, 25 (2006).
13.A. N. Lipatnikov, S. Nishiki, and T. Hasegawa, “A direct numerical study of vorticity transformation in weakly turbulent premixed flames,” Phys. Fluids 26, 105104 (2014).
14.A. M. Steinberg, J. F. Driscoll, and S. L. Ceccio, “Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV,” Exp. Fluids 44, 985 (2008).
15.A. M. Steinberg and J. F. Driscoll, “Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics,” Combust. Flame 156, 2285 (2009).
16.A. M. Steinberg, J. F. Driscoll, and S. L. Ceccio, “Three-dimensional temporally resolved measurements of turbulence-flame interactions using orthogonal-plane cinema-stereoscopic PIV,” Exp. Fluids 47, 527 (2009).
17.A. M. Steinberg, J. F. Driscoll, and S. L. Ceccio, “Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability,” Proc. Combust. Inst. 32, 1713 (2009).
18.N. Chakraborty, “Statistics of vorticity alignment with local strain rates in turbulent premixed flames,” Eur. J. Mech. B/Fluids 46, 201 (2014).
19.E. D. Siggia, “Numerical study of small scale intermittency in three-dimensional turbulence,” J. Fluid Mech. 107, 375 (1981).
20.W. T. Ashurst, A. Kerstein, R. M. Kerr, and C. H. Gibson, “Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence,” Phys. Fluids A 30, 2343 (1987).
21.Z.-S. She, E. Jackson, and S. Orszag, “Structure and dynamics of homogeneous turbulence: Models and simulations,” Proc. R. Soc. A 434, 101 (1991).
22.A. J. Majda, “Vorticity, turbulence, and acoustics in fluid flow,” SIAM Rev. 33, 349 (1991).
23.J. Jimenez, “Kinematic alignment effects in turbulent flows,” Phys. Fluids A 4, 652 (1992).
24.A. Tsinober, E. Kit, and T. Dracos, “Experimental investigation of the field of velocity gradients in turbulent flows,” J. Fluid Mech. 242, 169 (1992).
25.B. W. Zeff, D. D. Lanterman, R. McAllister, R. Roy, E. J. Kostelich, and D. P. Lathrop, “Measuring intense rotation and dissipation in turbulent flows,” Nature 421, 146 (2003).
26.B. Lüthi, A. Tsinober, and W. Kinzelbach, “Lagrangian measurement of vorticity dynamics in turbulent flow,” J. Fluid Mech. 528, 87 (2005).
27.P. E. Hamlington, J. Schumacher, and W. J. A. Dahm, “Local and nonlocal strain rate and vorticity alignment in turbulent flows,” Phys. Rev. E 77, 026303 (2008).
28.H. Xu, A. Pumir, and E. Bodenschatz, “The pirouette effect in turbulent flows,” Nat. Phys. 7, 709 (2011).
29.M. Mizomoto, S. Asaka, S. Ikai, and C. K. Law, “Effects of preferential diffusion on the burning intensity of curved flames,” Proc. Combust. Inst. 20, 1933 (1984).
30.C. K. Law, Combustion Physics (Cambridge University Press, Cambridge, UK, 2010).
31.C. K. Law and O. C. Kwon, “Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation,” Int. J. Hydrogen Energy 29, 867 (2004).
32.F. Dinkelacker, B. Manickam, and S. R. Mupppala, “Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach,” Combust. Flame 158, 1742 (2011).
33.G. I. Barenblatt, Y. B. Zeldovich, and A. G. Istratov, “On heat and diffusion effects in stability of laminar flames,” ZhPMTF 4, 21 (1962).
34.G. I. Sivashinsky, “Diffusional-thermal theory of cellular flames,” Combust. Sci. Technol. 16, 137 (1977).
35.P. Pelcé and P. Clavin, “Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames,” J. Fluid Mech. 124, 219 (1982).
36.M. Matalon and B. J. Matkowsky, “Flames as gas dynamic discontinuities,” J. Fluid Mech. 124, 239 (1982).
37.K. Wohl and L. Shore, “Experiments with butane-air and methane-air flames,” Ind. Eng. Chem. 47, 828 (1955).
38.V. P. Karpov and E. S. Severin, “Effects of molecular-transport coefficients on the rate of turbulent combustion,” Combust., Explos. Shock Waves 16, 41 (1980).
39.R. G. Abdel-Gayed, D. Bradley, M. Hamid, and M. Lawes, “Lewis number effects on turbulent burning velocity,” Proc. Combust. Inst. 20, 505 (1984).
40.H. Kido, T. Kitagawa, K. Nakashima, and K. Kato, “An improved model of turbulent mass burning velocity,” Memoirs Faculty Eng. Kyushu Univ. 49, 229 (1989).
41.M. S. Wu, A. Kwon, G. Driscoll, and G. M. Faeth, “Turbulent premixed hydrogen/air flames at high Reynolds numbers,” Combust. Sci. Tech. 73, 327 (1990).
42.B. Renou, A. Boukhalfa, D. Peuchberty, and M. Trinité, “Effects of stretch on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers,” Proc. Combust. Inst. 27, 841 (1998).
43.P. Venkateswaran, A. Marshall, D. H. Shin, D. Noble, J. Seitzman, and T. Lieuwen, “Measurements and analysis of turbulent consumption speeds of H2/CO mixtures,” Combust. Flame 158, 1602 (2011).
44.W. T. Ashurst, N. Peters, and M. D. Smooke, “Numerical simulation of turbulent flame structure with non-unity Lewis number,” Combust. Sci. Technol. 53, 339 (1987).
45.D. C. Haworth and T. J. Poinsot, “Numerical simulations of Lewis number effects in turbulent premixed flames,” J. Fluid Mech. 244, 405 (1992).
46.C. J. Rutland and A. Trouvé, “Direct simulations of premixed turbulent flames with nonunity Lewis numbers,” Combust. Flame 94, 41 (1993).
47.A. Trouvé and T. J. Poinsot, “The evolution equation for flame surface density in turbulent premixed combustion,” J. Fluid Mech. 278, 1 (1994).
48.N. Chakraborty and R. S. Cant, “Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime,” Phys. Fluids 17, 105105 (2005).
49.I. Han and K. H. Huh, “Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers for turbulent premixed combustion,” Combust. Flame 152, 194 (2008).
50.N. Chakraborty and M. Klein, “Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames,” Phys. Fluids 20, 065102 (2008).
51.N. Chakraborty and R. S. Cant, “Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames,” Combust. Flame 156, 1427 (2009).
52.N. Chakraborty, M. Katragadda, and R. S. Cant, “Effects of Lewis number on turbulent kinetic energy transport in turbulent premixed combustion,” Phys. Fluids 23, 075109 (2011).
53.A. J. Aspden, M. S. Day, and J. B. Bell, “Characterization of low Lewis number flames,” Proc. Combust. Inst. 33, 1463 (2011).
54.V. R. Kuznetsov and V. A. Sabelnikov, Turbulence and Combustion (Hemisphere Publishing Corporation, New York, 1990).
55.A. N. Lipatnikov and J. Chomiak, “Molecular transport effects on turbulent flame propagation and structure,” Prog. Energy Combust. Sci. 31, 1 (2005).
56.K. W. Jenkins and R. S. Cant, “DNS of turbulent flame kernels,” in Proceedings of 2nd AFOSR Conference on DNS and LES (Kluwer Academic Publishers, Dordrecht, 1999), p. 192.
57.A. A. Wray, “Minimal storage time advancement schemes for spectral methods,” Report No. MS 202 A-1, NASA Ames Research Center, California, 1990.
58.R. S. Rogallo, “Numerical experiments in homogeneous turbulence,” NASA Technical Memorandum 91416, NASA Ames Research Center, California, 1981.
59.G. K. Batchelor and A. A. Townsend, “Decay of turbulence in the final period,” Proc. R. Soc. A 194, 527 (1948).
60.N. Peters, Turbulent Combustion, Cambridge Monograph on Mechanics (Cambridge University Press, Cambridge, 2000).
61.D. Veynante, A. Trouvé, K. N. C. Bray, and T. Mantel, “Gradient and counter-gradient turbulent scalar transport in turbulent premixed flames,” J. Fluid Mech. 332, 263 (1997).
62.M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, “Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion,” Proc. Combust. Inst. 27, 917 (1998).
63.F. Charlette, C. Meneveau, and D. Veynante, “A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: Nondynamic formulation and initial tests,” Combust. Flame 131, 181 (2002).
64.R. Grout, “An age extended progress variable for conditioned reaction rates,” Phys. Fluids 19, 105107 (2007).
65.I. Han and K. H. Huh, “Effects of Karlovitz number on the evolution of the flame surface density in turbulent premixed flames,” Proc. Combust. Inst. 32, 1419 (2009).
66.C. Pera, S. Chevillard, and J. Reveillon, “Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines,” Combust. Flame 160, 1020 (2013).
67.C. Dopazo, L. Cifuentes, J. Martin, and C. Jimenez, “Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame,” Combust. Flame 162, 1729 (2014).
68.F. A. Williams, Combustion Theory, 2nd ed. (Benjamin/Cummings, Menlo Park, CA, 1985).
69.Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Plenum Publishing Corporation, New York, 1985).
70.P. Clavin, “Dynamics of combustion fronts in premixed gases: From flames to detonations,” Proc. Combust. Inst. 28, 569 (2000).
71.G. I. Sivashinsky, “Some developments in premixed combustion modeling,” Proc. Combust. Inst. 29, 1737 (2002).
72.M. Matalon, “Flame dynamics,” Proc. Combust. Inst. 32, 57 (2009).
73.A. G. Istratov and V. B. Librovich, “On the stability of gasdynamic discontinuities associated with chemical reactions. The case of a spherical flame,” Astronaut. Acta 14, 453 (1969).
74.J. K. Bechtold and M. Matalon, “Hydrodynamic and diffusion effects on the stability of spherically expanding flames,” Combust. Flame 67, 77 (1987).
75.R. Addabo, J. K. Bechtold, and M. Matalon, “Wrinkling of spherically expanding flames,” Proc. Combust. Inst. 29, 1527 (2002).
76.M. Matalon, C. Cui, and J. K. Bechtold, “Hydrodynamic theory of premixed flames: Effects of stoichiometry, variable transport coefficients and arbitrary reaction orders,” J. Fluid Mech. 487, 179 (2003).
77.A. G. Class, B. J. Matkowsky, and A. Y. Klimenko, “A unified model of flames as gasdynamic discontinuities,” J. Fluid Mech. 491, 11 (2003).
78.A. G. Class, B. J. Matkowsky, and A. Y. Klimenko, “Stability of planar flames as gasdynamic discontinuities,” J. Fluid Mech. 491, 51 (2003).
79.A. P. Kelley, J. K. Bechtold, and C. K. Law, “Premixed flame propagation in a confining vessel with weak pressure rise,” J. Fluid Mech. 691, 26 (2012).
80.V. A. Sabelnikov and A. N. Lipatnikov, “Transition from pulled to pushed fronts in premixed turbulent combustion: Theoretical and numerical study,” Combust. Flame 162, 2893 (2015).
81.K. N. C. Bray, P. A. Libby, and J. B. Moss, “Unified modelling approach for premixed turbulent combustion. Part I: General formulation,” Combust. Flame 61, 87 (1985).

Data & Media loading...


Article metrics loading...



The effects of Lewis number on both vorticity and enstrophy transport within the flame brush have been analysed using direct numerical simulation data of freely propagating statistically planar turbulent premixed flames, representing the thin reaction zone regime of premixed turbulentcombustion. In the simulations, was ranged from 0.34 to 1.2 by keeping the laminar flame speed, thermal thickness, Damköhler, Karlovitz, and Reynolds numbers unchanged. The enstrophy has been shown to decay significantly from the unburned to the burned gas side of the flame brush in the ≈ 1.0 flames. However, a considerable amount of enstrophy generation within the flame brush has been observed for the = 0.34 case and a similar qualitative behaviour has been observed in a much smaller extent for the = 0.6 case. The vorticity components have been shown to exhibit anisotropic behaviour within the flame brush, and the extent of anisotropy increases with decreasing . The baroclinic torque term has been shown to be principally responsible for this anisotropic behaviour. The vortex stretching and viscous dissipation terms have been found to be the leading order contributors to the enstrophy transport for all cases, but the baroclinic torque and the sink term due to dilatation play increasingly important role for flames with decreasing . Furthermore, the correlation between the fluctuations of enstrophy and dilatation rate has been shown to play an important role in determining the material derivative of enstrophy based on the mean flow in the case of a low .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd