Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
W. O. Ree and V. J. Palmer, Flow of Water in Channels Protected by Vegetative Linings (US Department of Agriculture, Washington, D.C., 1949).
H. M. Nepf, “Flow and transport in regions with aquatic vegetation,” Annu. Rev. Fluid Mech. 44, 123142 (2012).
S. M. Haslam, River Plants: The Macrophytic Vegetation of Watercourses (CUP Archive, 1978).
E. de Langre, “Effects of wind on plants,” Annu. Rev. Fluid Mech. 40(1), 141168 (2008).
G. Bornette and S. Puijalon, “Response of aquatic plants to abiotic factors: A review,” Aquat. Sci. 73(1), 114 (2011).
C. Sanchez, H. Arribart, and M. M. Giraud Guille, “Biomimetism and bioinspiration as tools for the design of innovative materials and systems,” Nat. Mater. 4(4), 277288 (2005).
B. Bhushan, “Biomimetics: Lessons from nature–an overview,” Philos. Trans. R. Soc., A 367(1893), 14451486 (2009).
J. Finnigan, “Turbulence in plant canopies,” Annu. Rev. Fluid Mech. 32, 519571 (2000).
P. Naden, P. Rameshwaran, O. Mountford, and C. Robertson, “The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production,” Hydrol. Processes 20(18), 39153938 (2006).
H. M. Nepf, “Hydrodynamics of vegetated channels,” J. Hydraul. Res. 50(3), 262279 (2012).
R.-M. Li and H. W. Shen, “Effect of tall vegetations on flow and sediment,” J. Hydraul. Div. 99(5), 793814 (1973).
F. Lopez and M. Garcia, “Open-channel flow through simulated vegetation: Suspended sediment transport modeling,” Water Resour. Res. 34(9), 23412352, doi:10.1029/98WR01922 (1998).
J. Järvelä, J. Aberle, A. Dittrich, H. P. Rauch, and I. Schnauder, “Flow-vegetation-sediment interaction: Research challenges,” in River Flow 2006, edited by R. M. L. Ferreira, E. C. T. L. Alves, J. G. A. B. Leal, and A. H. Cardoso (Taylor & Francis, 2006), Vol.2, pp. 20172026.
N. Kouwen and M. Fathi-Moghadam, “Friction factors for coniferous trees along rivers,” J. Hydraul. Eng. 126(10), 732740 (2000).
H. M. Nepf, “Drag, turbulence, and diffusion in flow through emergent vegetation,” Water Resour. Res. 35(2), 479489, doi:10.1029/1998WR900069 (1999).
F. C. Wu, H. W. Shen, and Y. J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” J. Hydraul. Eng. 125(9), 934942 (1999).
N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” J. Hydraul. Div. 99, 713728 (1973).
M. Righetti and A. Armanini, “Flow resistance in open channel flows with sparsely distributed bushes,” J. Hydrol. 269(1-2), 5564 (2002).
E. de Langre, “Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory,” J. Exp. Biol. 215, 914921 (2013).
M. Ghisalberti and H. M. Nepf, “Mixing layers and coherent structures in vegetated aquatic flows,” J. Geophys. Res. 107, 3-13-11, doi:10.1029/2001JC000871 (2002).
C. Py, E. de Langre, and B. Moulia, “A frequency lock-in mechanism in the interaction between wind and crop canopies,” J. Fluid Mech. 568, 425449 (2006).
S. M. Cameron, V. I. Nikora, I. Albayrak, O. Miler, M. Stewart, and F. Siniscalchi, “Interactions between aquatic plants and turbulent flow: A field study using stereoscopic PIV,” J. Fluid Mech. 732, 345372 (2013).
R. Singh, M. M. Bandi, A. Mahadevan, and S. Mandre, “Linear stability analysis for monami in a submerged seagrass bed,” J. Fluid Mech. 786, R1 (2016).
S. G. Monismith, “Hydrodynamics of coral reefs,” Annu. Rev. Fluid Mech. 39, 3755 (2007).
M. Luhar and H. M. Nepf, “Wave-induced dynamics of flexible blades,” J. Fluids Struct. 61, 2041 (2016).
J. S. Madin and S. R. Connolly, “Ecological consequences of major hydrodynamic disturbances on coral reefs,” Nature 444, 477480 (2006).
D. Lopez, S. Michelin, and E. de Langre, “Flow-induced pruning of branched systems and brittle reconfiguration,” J. Theor. Biol. 284, 117124 (2011).
R. Nathan, G. Katul, H. Horn, S. Thomas, and R. Oren, “Mechanisms of long–distance dispersal of seeds by wind,” Nature 418, 409413 (2002).
R. Nathan and G. Katul, “Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind,” Proc. Natl. Acad. Sci. 102, 82518256 (2005).
S. Vogel, “Drag and flexibility in sessile organisms,” Am. Zool. 24(1), 3744 (1984).
S. Vogel, “Drag and reconfiguration of broad leaves in high winds,” J. Exp. Bot. 40(217), 941948 (1989).
S. Vogel, Life in Moving Fluids: The Physical Biology of Flow (Princeton University Press, 1994).
T. Barois and E. de Langre, “Flexible body with drag independent of the flow velocity,” J. Fluid Mech. 735, R2 (2013).
K. Sand-Jensen, “Drag and reconfiguration of freshwater macrophytes,” Freshwater Biol. 48(2), 271283 (2003).
O. Speck and H.-C. Spatz, “Damped oscillations of the giant reed Arundo donax (Poaceae),” Am. J. Bot. 91(6), 789796 (2004).
M. Rudnicki, S. J. Mitchell, and M. D. Novak, “Wind tunnel measurements of crown streamlining and drag relationships for three conifer species,” Can. J. For. Res. 34(3), 666676 (2004).
S. Vollsinger, S. J. Mitchell, K. E. Byrne, M. D. Novak, and M. Rudnicki, “Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species,” Can. J. For. Res. 35(5), 12381249 (2005).
S. Alben, M. J. Shelley, and J. Zhang, “Drag reduction through self-similar bending of a flexible body,” Nature 420(6915), 479481 (2002).
S. Alben, M. J. Shelley, and J. Zhang, “How flexibility induces streamlining in a two-dimensional flow,” Phys. Fluids 16(5), 1694 (2004).
F. P. Gosselin, E. de Langre, and B. A. Machado-Almeida, “Drag reduction of flexible plates by reconfiguration,” J. Fluid Mech. 650, 319341 (2010).
J. T. Dijkstra and R. E. Uittenbogaard, “Modeling the interaction between flow and highly flexible aquatic vegetation,” Water Resour. Res. 46(12), W12547, doi:10.1029/2010WR009246 (2010).
M. Luhar and H. M. Nepf, “Flow-induced reconfiguration of buoyant and flexible aquatic vegetation,” Limnol. Oceanogr. 56(6), 20032017 (2011).
L. Schouveiler and A. Boudaoud, “The rolling up of sheets in a steady flow,” J. Fluid Mech. 563, 7180 (2006).
I. Albayrak, V. Nikora, O. Miler, and M. O. Hare, “Flow-plant interactions at a leaf scale: Effects of leaf shape, serration, roughness and flexural rigidity,” Aquat. Sci. 74(2), 267286 (2012).
R. D. Blevins, Flow-Induced Vibration (Van Nostrand Reinhold Co., New York, 1977).
A. S. Thom, “Momentum absorption by vegetation,” Q. J. R. Meteorol. Soc. 97, 414428 (1971).
H. M. Nepf and E. R. Vivoni, “Flow structure in depth-limited, vegetated flow,” J. Geophys. Res. 105(C12), 2854728557, doi:10.1029/2000JC900145 (2000).
F. P. Gosselin and E. de Langre, “Destabilising effects of plant flexibility in air and aquatic vegetation canopy flows,” Eur. J. Mech., B: Fluids 28, 271282 (2009).
M. R. Hoffmann, “Application of a simple space-time averaged porous media model to flow in densely vegetated channels,” J. Porous Media 7(3), 183 (2004).
O. Doaré, B. Moulia, and E. de Langre, “Effect of plant interaction on wind-induced crop motion,” J. Biomech. Eng. 126(2), 146151 (2004).
J. Favier, A. Dauptain, D. Basso, and A. Bottaro, “Passive separation control using a self-adaptive hairy coating,” J. Fluid Mech. 627, 451483 (2009).
F. P. Gosselin and E. de Langre, “Drag reduction by reconfiguration of a poroelastic system,” J. Fluids Struct. 27(7), 11111123 (2011).
Y. Brunet, J. J. Finnigan, and M. R. Raupach, “A wind tunnel study of air flow in waving wheat: Single-point velocity statistics,” Boundary-Layer Meteorol. 70, 95132 (1994).
M. D. Novak, J. S. Warland, A. L. Orchansky, R. Ketler, and S. Green, “Wind tunnel and field measurements of turbulent flow in forests. Part I: Uniformly thinned stands,” Boundary-Layer Meteorol. 95, 457495 (2000).
C. H. Peterson, R. A. Luettich, F. Micheli, and G. A. Skilleter, “Attenuation of water flow inside seagrass canopies of differing structure,” Mar. Ecol.: Prog. Ser. 268, 8192 (2004).
D. Poggi, A. Porporato, L. Ridolfi, J. D. Albertson, and G. G. Katul, “The effect of vegetation density on canopy sub-layer turbulence,” Boundary-Layer Meteorol. 111, 565587 (2004).
T. Leclercq and E. de Langre, “Drag reduction by elastic reconfiguration of non-uniform beams in non-uniform flows,” J. Fluids Struct. 60, 114129 (2016).
L. Chevalier, Mécanique des Systèmes et des Milieux Déformables (Ellipses Edition, 1994).
D. M. Temple, K. M. Robinson, R. M. Ahring, and A. G. Davis, Stability Design of Grasslined Open Channels Vol. 667 (US Department of Agriculture, Agricultural Research Service, 1987).
H. Glauert, “Wind tunnel interference on wings, bodies and airscrews,” Technical Report 1566, DTIC Document, 1933.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000).

Data & Media loading...


Article metrics loading...



Plants in aquatic canopies deform when subjected to a water flow and so, unlike a rigid bluff body, the resulting drag force grows sub-quadratically with the flow velocity . In this article, the effect of density on the canopy reconfiguration and the corresponding drag reduction is experimentally investigated for simple 2D synthetic canopies in an inclinable, narrow water channel. The drag acting on the canopy, and also on individual sheets, is systematically measured via two independent techniques. Simultaneous drag and reconfiguration measurements demonstrate that data for different Reynolds numbers (400–2200), irrespective of sheet width () and canopy spacing (ℓ), collapse on a unique curve given by a bending beam model which relates the reconfiguration number and a properly rescaled Cauchy number. Strikingly, the measured Vogel exponent and hence the drag reduction via reconfiguration is found to be independent of the spacing between sheets and the lateral confinement; only the drag coefficient decreases linearly with the sheet spacing since a strong sheltering effect exists as long as the spacing is smaller than a critical value depending on the sheet width.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd