Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/4/10.1063/1.4944617
1.
1.C.-S. Yih, “Instability due to viscosity stratification,” J. Fluid Mech. 27, 337352 (1967).
http://dx.doi.org/10.1017/S0022112067000357
2.
2.S. G. Yiantsios and B. G. Higgins, “Linear stability of plane Poiseuille flow of two superposed fluids,” Phys. Fluids 31, 32253238 (1988).
http://dx.doi.org/10.1063/1.866933
3.
3.P. A. M. Boomkamp and R. H. M. Miesen, “Classification of instabilities in parallel two-phase flow,” Int. J. Multiphase Flow 22(Supplement), 6788 (1996).
http://dx.doi.org/10.1016/S0301-9322(96)90005-1
4.
4.P. Huerre and P. A. Monkewitz, “Local and global instabilities in spatially developing flows,” Annu. Rev. Fluid Mech. 22, 473537 (1990).
http://dx.doi.org/10.1146/annurev.fl.22.010190.002353
5.
5.P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Applied Mathematical Sciences Vol. 142 (Springer, New York, Berlin, Heidelberg, 2001).
6.
6.A. P. Hooper and R. Grimshaw, “Nonlinear instability at the interface between two viscous fluids,” Phys. Fluids (1958-1988) 28, 3745 (1985).
http://dx.doi.org/10.1063/1.865160
7.
7.F. Charru and J. Fabre, “Long waves at the interface between two viscous fluids,” Phys. Fluids (1994-present) 6, 12231235 (1994).
http://dx.doi.org/10.1063/1.868291
8.
8.B. S. Tilley, S. H. Davis, and S. G. Bankoff, “Nonlinear long-wave stability of superposed fluids in an inclined channel,” J. Fluid Mech. 277, 5583 (1994).
http://dx.doi.org/10.1017/S0022112094002685
9.
9.G. F. Dietze and C. Ruyer-Quil, “Wavy liquid films in interaction with a confined laminar gas flow,” J. Fluid Mech. 722, 348393 (2013).
http://dx.doi.org/10.1017/jfm.2013.98
10.
10.L. Brevdo, P. Laure, F. Dias, and T. J. Bridges, “Linear pulse structure and signalling in a film flow on an inclined plane,” J. Fluid Mech. 396, 3771 (1999).
http://dx.doi.org/10.1017/S0022112099005790
11.
11.P. Barthelet, F. Charru, and J. Fabre, “Experimental study of interfacial long waves in a two-layer shear flow,” J. Fluid Mech. 303, 2353 (1995).
http://dx.doi.org/10.1017/S0022112095004162
12.
12.M. Sangalli, M. J. McCready, and H.-C. Chang, “Stabilization mechanisms of short waves in stratified gas–liquid flow,” Phys. Fluids 9, 919939 (1997).
http://dx.doi.org/10.1063/1.869188
13.
13.P. A. M. Boomkamp, “Stability of parallel two-phase flow,” Ph.D. thesis, University of Twente, Enschede, 1998.
14.
14.G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization, Texts Applied in Mathematics Vol. 53 (New York, NY, 2008).
15.
15.S. G. Bankoff and S. C. Lee, “A critical review of the flooding literature,” in Multiphase Science and Technology, edited by G. F. Hewitt, J. M. Delhaye, and N. Zuber (Hemisphere, Washington, 1986), Vol. 2, pp. 95180.
16.
16.A. Zapke and D. G. Kröger, “Countercurrent gas–liquid flow in inclined and vertical ducts—I: Flow patterns, pressure drop characteristics and flooding,” Int. J. Multiphase Flow 26, 14391455 (2000).
http://dx.doi.org/10.1016/S0301-9322(99)00097-X
17.
17.N. A. Vlachos, S. V. Paras, A. A. Mouza, and A. J. Karabelas, “Visual observations of flooding in narrow rectangular channels,” Int. J. Multiphase Flow 27, 14151430 (2001).
http://dx.doi.org/10.1016/S0301-9322(01)00009-X
18.
18.E. I. P. Drosos, S. V. Paras, and A. J. Karabelas, “Counter-current gas–liquid flow in a vertical narrow channel—Liquid film characteristics and flooding phenomena,” Int. J. Multiphase Flow 32, 5181 (2006).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.07.005
19.
19.S. V. Alekseenko, S. P. Aktershev, A. V. Cherdantsev, S. M. Kharlamov, and D. M. Markovich, “Primary instabilities of liquid film flow sheared by turbulent gas stream,” Int. J. Multiphase Flow 35, 617627 (2009).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.03.003
20.
20.Y. Y. Trifonov, “Counter-current gas-liquid wavy film flow between the vertical plates analyzed using the Navier-Stokes equations,” AIChE J. 56, 19751987 (2010).
http://dx.doi.org/10.1002/aic.12128
21.
21.Y. Y. Trifonov, “Flooding in two-phase counter-current flows: Numerical investigation of the gas–liquid wavy interface using the Navier–Stokes equations,” Int. J. Multiphase Flow 36, 549557 (2010).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2010.03.006
22.
22.D. Tseluiko and S. Kalliadasis, “Nonlinear waves in counter-current gas–liquid film flow,” J. Fluid Mech. 673, 1959 (2011).
http://dx.doi.org/10.1017/S002211201000618X
23.
23.J. W. Miles, “On the generation of surface waves by shear flows,” J. Fluid Mech. 3, 185204 (1957).
http://dx.doi.org/10.1017/S0022112057000567
24.
24.T. B. Benjamin, “Shearing flow over a wavy boundary,” J. Fluid Mech. 6, 161205 (1959).
http://dx.doi.org/10.1017/S0022112059000568
25.
25.R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfacial flow,” Annu. Rev. Fluid Mech. 31, 567603 (1999).
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
26.
26.T. Boeck, J. Li, E. López Pagés, P. Yecko, and S. Zaleski, “Ligament formation in sheared liquid–gas layers,” Theor. Comput. Fluid Dyn. 21, 5976 (2007).
http://dx.doi.org/10.1007/s00162-006-0022-1
27.
27.D. Fuster, J.-P. Matas, S. Marty, S. Popinet, J. Hoepffner, A. Cartellier, and S. Zaleski, “Instability regimes in the primary breakup region of planar coflowing sheets,” J. Fluid Mech. 736, 150176 (2013).
http://dx.doi.org/10.1017/jfm.2013.536
28.
28.P. A. M. Boomkamp, B. J. Boersma, R. H. M. Miesen, and G. V. Beijnon, “A Chebyshev collocation method for solving two-phase flow stability problems,” J. Comput. Phys. 132, 191200 (1997).
http://dx.doi.org/10.1006/jcph.1996.5571
29.
29.L. Ó Náraigh, P. Valluri, D. M. Scott, I. Bethune, and P. D. M. Spelt, “Linear instability, nonlinear instability and ligament dynamics in three-dimensional laminar two-layer liquid–liquid flows,” J. Fluid Mech. 750, 464506 (2014).
http://dx.doi.org/10.1017/jfm.2014.274
30.
30.M. Sussman, E. Fatemi, P. Smereka, and S. Osher, “An improved level set method for incompressible two-phase flows,” Comput. Fluids 27, 663680 (1998).
http://dx.doi.org/10.1016/S0045-7930(97)00053-4
31.
31.J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys. 100, 335354 (1992).
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
32.
32.J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, New York, 2001).
33.
33.A. J. Chorin, “Numerical solution of the Navier-Stokes equations,” Math. Comput. 22, 745762 (1968).
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
34.
34.G.-S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO Schemes,” J. Comput. Phys. 126, 202228 (1996).
http://dx.doi.org/10.1006/jcph.1996.0130
35.
35.G. Russo and P. Smereka, “A remark on computing distance functions,” J. Comput. Phys. 163, 5167 (2000).
http://dx.doi.org/10.1006/jcph.2000.6553
36.
36.M. Kraume, Transportvorgänge in der Verfahrenstechnik, 2nd ed. (Berlin, Heidelberg, 2012).
37.
37.K. Kupfer, A. Bers, and A. K. Ram, “The cusp map in the complex-frequency plane for absolute instabilities,” Phys. Fluids 30, 30753082 (1987).
http://dx.doi.org/10.1063/1.866483
38.
38.L. Ó Náraigh and P. D. M. Spelt, “An analytical connection between temporal and spatio-temporal growth rates in linear stability analysis,” Proc. R. Soc. A 469, 20130171 (2013).
http://dx.doi.org/10.1098/rspa.2013.0171
39.
39.L. Ó Náraigh, P. D. M. Spelt, and S. J. Shaw, “Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow,” J. Fluid Mech. 714, 5894 (2013).
http://dx.doi.org/10.1017/jfm.2012.452
40.
40.N. S. Barlow, B. T. Helenbrook, S. P. Lin, and S. J. Weinstein, “An interpretation of absolutely and convectively unstable waves using series solutions,” Wave Motion 47, 564582 (2010).
http://dx.doi.org/10.1016/j.wavemoti.2010.04.003
41.
41.N. S. Barlow, S. J. Weinstein, and B. T. Helenbrook, “On the response of convectively unstable flows to oscillatory forcing with application to liquid sheets,” J. Fluid Mech. 699, 115152 (2012).
http://dx.doi.org/10.1017/jfm.2012.86
42.
42.N. S. Barlow, B. T. Helenbrook, and S. J. Weinstein, “Algorithm for spatio-temporal analysis of the signalling problem,” IMA J. Appl. Math. (published online 2015).
http://dx.doi.org/10.1093/imamat/hxv040
43.
43.J. T. Stuart, “On the non-linear mechanics of hydrodynamic stability,” J. Fluid Mech. 4, 121 (1958).
http://dx.doi.org/10.1017/S0022112058000276
44.
44.L. D. Landau, “On the problem of turbulence,” Dokl. Akad. Nauk SSSR 44, 339342 (1944) (in Russian).
45.
45.L. Ó Náraigh, P. Spelt, O. Matar, and T. Zaki, “Interfacial instability in turbulent flow over a liquid film in a channel,” Int. J. Multiphase Flow 37, 812830 (2011).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2011.02.010
46.
46.C. Ruyer-Quil and P. Manneville, “Improved modeling of flows down inclined planes,” Eur. Phys. J. B 15, 357369 (2000).
http://dx.doi.org/10.1007/s100510051137
47.
47.R. Vellingiri, D. Tseluiko, and S. Kalliadasis, “Absolute and convective instabilities in counter-current gas–liquid film flows,” J. Fluid Mech. 763, 166201 (2015).
http://dx.doi.org/10.1017/jfm.2014.667
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/4/10.1063/1.4944617
Loading
/content/aip/journal/pof2/28/4/10.1063/1.4944617
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/4/10.1063/1.4944617
2016-04-01
2016-12-02

Abstract

We consider the genesis and dynamics of interfacialinstability in vertical gas-liquidflows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacialdynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/4/1.4944617.html;jsessionid=yIFwf4_1JrUfq5T3f4JuOlZy.x-aip-live-06?itemId=/content/aip/journal/pof2/28/4/10.1063/1.4944617&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/4/10.1063/1.4944617&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/4/10.1063/1.4944617'
Right1,Right2,Right3,