Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
V. P. Skripov, Metastable Liquids (Wiley, New York, 1974).
C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, London, 1995).
V. V. Osipov, C. V. Muratov, E. Ponizovskaya-Devine, M. Foygel, and V. N. Smelyanskiy, “Cavitation-induced ignition of cryogenic hydrogen–oxygen fluids,” Appl. Phys. Lett. 98, 134102 (2011).
R. C. A. Brown and H. J. Hilke, “The development of ultrasonic bubble chamber,” Phys. Bull. 23, 215218 (1972).
A. D. Misener and F. T. Hedgcock, “Tensile strength of liquid nitrogen,” Nature (London) 171, 835836 (1953).
J. W. Beams, “Tensile strengths of liquid argon, helium, nitrogen, and oxygen,” Phys. Fluids 2, 14 (1959).
P. L. Marston, “Tensile strength and visible ultrasonic cavitation of superfluid 4He,” J. Low Temp. Phys. 25, 383407 (1976).
X. B. Zhang, L. M. Qiu, Y. Gao, and X. J. Zhang, “Computational fluid dynamics study on cavitation in liquid nitrogen,” Cryogenics 48, 432438 (2008).
Y. Tomita, M. Tsubota, K. Nagane, and N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 59936002 (2000).
V. P. Skripov, E. N. Sinitsyn, P. A. Pavlov, G. V. Ermakov, G. N. Muratov, N. V. Bulanov, and V. G. Baidakov, Thermophysical Properties of Liquids in The Metastable (Superheated) State (Gordon and Breach Science Publishers, New York, 1988).
J. A. Nissen, E. Bodegom, L. C. Brodie, and J. S. Semura, “Tensile strength of liquid 4He,” Phys. Rev. B 40, 66176624 (1989).
F. Caupin and E. Herbert, “Cavitation in water: A review,” C. R. Phys. 7, 10001017 (2006).
G. A. Carlson and K. W. Henry, “Technique for studying dynamic tensile failure in liquids: Application to glycerol,” J. Appl. Phys. 44, 22012207 (1973).
V. K. Kedrinskii, Hydrodynamics of Explosion: Experiments and Models (Springer, Berlin, Heidelberg, New York, 2005).
V. E. Vinogradov, P. A. Pavlov, and V. G. Baidakov, “Explosive cavitation in superheated liquid argon,” J. Chem. Phys. 128, 234508 (2008).
V. E. Vinogradov, P. A. Pavlov, and V. G. Baidakov, “Cavitation strength of an argon–helium solution,” Chem. Phys. Lett. 474, 294296 (2009).
R. N. Thurston, in Physical Acoustics. Principles and Methods, Part A, edited byV. P. Mason (Academic Press, New York, London, 1964), Vol. 1.
P. A. Pavlov and V. E. Vinogradov, “Fluctuation emergence of bubbles under a rapid drop of pressure in a liquid,” Thermophys. Aeromech. 22, 441452 (2015).
V. G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley, Weinheim, 2007).
V. G. Baidakov, “Thermodynamic properties of superheated liquid nitrogen (p, ρ, T-properties),” Teplofiz. Vys. Temp. 32, 681685 (1994).
V. G. Baidakov and V. P. Skripov, “Superheating and surface tension of vapor nucleus of nitrogen, oxygen and methane,” Zh. Fiz. Khim. 56, 818821 (1982).
V. G. Baidakov and A. M. Kaverin, “Work of bubble formation and the spontaneous-boiling limit of superheated liquid-nitrogen,” Teplofiz. Vys. Temp. 19, 234240 (1981).
Ya. B. Zeldovich, “Theory of formation of a new phase. Cavitation,” Zh. Eksp. Teor. Fiz. 12, 525538 (1942).
Yu. M. Kagan, “Boiling kinetics of a pure liquid,” Zh. Fiz. Khim. 34, 9298 (1960).
J. W. Gibbs, The Collected Works. Vol. 2: Thermodynamics (Longmans and Green, New York, London, Toronto, 1928).
J. W. Cahn and J. F. Hilliard, “Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid,” J. Chem. Phys. 31, 688699 (1959).
J. D. van der Waals and Ph. Kohnstamm, Lehrbuch der Thermodynamik (Johann-Ambrosius-Barth Berlag, Leipzig, Amsterdam, 1908).
V. G. Baidakov and A. M. Kaverin, “The thermodynamic properties of superheated liquid nitrogen: Ultrasound velocity,” Teplofiz. Vys. Temp. 32, 837841 (1994).
V. V. Sychev, A. A. Vasserman, A. D. Kozlov et al., Thermodynamic Properties of Nitrogen (Hemisphere Publishing Corp., Washington, 1987).
V. G. Baidakov, K. V. Khvostov, and G. N. Muratov, “Surface tension of nitrogen, oxygen, and methane over a wilde range of temperature,” Zh. Fiz. Khim. 56, 814817 (1982).
V. G. Baidakov and K. S. Bobrov, “Spontaneous cavitation in a Lennard-Jones liquid at negative pressures,” J. Chem. Phys. 140, 184506 (2014).

Data & Media loading...


Article metrics loading...



The method of pulsed liquid superheating in a tension wave that forms when a compression pulse is reflected from the liquid free surface has been used to investigate the kinetics of spontaneous cavitation in liquid nitrogen. The limiting tensile stress of nitrogen corresponding to nucleation rates = 1020 − 1022 s−1 m−3 and the slope of the temperature dependence of the nucleation rate = ln/ have been determined by experiment. The results of experiments are compared with classical nucleation theory (CNT) and a modified classical nucleation theory (MCNT), which takes into account the size dependence of the properties of a critical bubble. It has been noted that experimental data are in better agreement with the results of MCNT than with those of CNT.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd