Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/5/10.1063/1.4951703
1.
V. P. Skripov, Metastable Liquids (Wiley, New York, 1974).
2.
C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, London, 1995).
3.
V. V. Osipov, C. V. Muratov, E. Ponizovskaya-Devine, M. Foygel, and V. N. Smelyanskiy, “Cavitation-induced ignition of cryogenic hydrogen–oxygen fluids,” Appl. Phys. Lett. 98, 134102 (2011).
http://dx.doi.org/10.1063/1.3571445
4.
R. C. A. Brown and H. J. Hilke, “The development of ultrasonic bubble chamber,” Phys. Bull. 23, 215218 (1972).
http://dx.doi.org/10.1088/0031-9112/23/4/013
5.
A. D. Misener and F. T. Hedgcock, “Tensile strength of liquid nitrogen,” Nature (London) 171, 835836 (1953).
http://dx.doi.org/10.1038/171835b0
6.
J. W. Beams, “Tensile strengths of liquid argon, helium, nitrogen, and oxygen,” Phys. Fluids 2, 14 (1959).
http://dx.doi.org/10.1063/1.1724385
7.
P. L. Marston, “Tensile strength and visible ultrasonic cavitation of superfluid 4He,” J. Low Temp. Phys. 25, 383407 (1976).
http://dx.doi.org/10.1007/BF00655838
8.
X. B. Zhang, L. M. Qiu, Y. Gao, and X. J. Zhang, “Computational fluid dynamics study on cavitation in liquid nitrogen,” Cryogenics 48, 432438 (2008).
http://dx.doi.org/10.1016/j.cryogenics.2008.05.007
9.
Y. Tomita, M. Tsubota, K. Nagane, and N. An-naka, “Behavior of laser-induced cavitation bubbles in liquid nitrogen,” J. Appl. Phys. 88, 59936002 (2000).
http://dx.doi.org/10.1063/1.1320028
10.
V. P. Skripov, E. N. Sinitsyn, P. A. Pavlov, G. V. Ermakov, G. N. Muratov, N. V. Bulanov, and V. G. Baidakov, Thermophysical Properties of Liquids in The Metastable (Superheated) State (Gordon and Breach Science Publishers, New York, 1988).
11.
J. A. Nissen, E. Bodegom, L. C. Brodie, and J. S. Semura, “Tensile strength of liquid 4He,” Phys. Rev. B 40, 66176624 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.6617
12.
F. Caupin and E. Herbert, “Cavitation in water: A review,” C. R. Phys. 7, 10001017 (2006).
http://dx.doi.org/10.1016/j.crhy.2006.10.015
13.
G. A. Carlson and K. W. Henry, “Technique for studying dynamic tensile failure in liquids: Application to glycerol,” J. Appl. Phys. 44, 22012207 (1973).
http://dx.doi.org/10.1063/1.1662537
14.
V. K. Kedrinskii, Hydrodynamics of Explosion: Experiments and Models (Springer, Berlin, Heidelberg, New York, 2005).
15.
V. E. Vinogradov, P. A. Pavlov, and V. G. Baidakov, “Explosive cavitation in superheated liquid argon,” J. Chem. Phys. 128, 234508 (2008).
http://dx.doi.org/10.1063/1.2931539
16.
V. E. Vinogradov, P. A. Pavlov, and V. G. Baidakov, “Cavitation strength of an argon–helium solution,” Chem. Phys. Lett. 474, 294296 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.04.072
17.
R. N. Thurston, in Physical Acoustics. Principles and Methods, Part A, edited byV. P. Mason (Academic Press, New York, London, 1964), Vol. 1.
18.
P. A. Pavlov and V. E. Vinogradov, “Fluctuation emergence of bubbles under a rapid drop of pressure in a liquid,” Thermophys. Aeromech. 22, 441452 (2015).
http://dx.doi.org/10.1134/S0869864315040058
19.
V. G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley, Weinheim, 2007).
20.
V. G. Baidakov, “Thermodynamic properties of superheated liquid nitrogen (p, ρ, T-properties),” Teplofiz. Vys. Temp. 32, 681685 (1994).
21.
V. G. Baidakov and V. P. Skripov, “Superheating and surface tension of vapor nucleus of nitrogen, oxygen and methane,” Zh. Fiz. Khim. 56, 818821 (1982).
22.
V. G. Baidakov and A. M. Kaverin, “Work of bubble formation and the spontaneous-boiling limit of superheated liquid-nitrogen,” Teplofiz. Vys. Temp. 19, 234240 (1981).
23.
Ya. B. Zeldovich, “Theory of formation of a new phase. Cavitation,” Zh. Eksp. Teor. Fiz. 12, 525538 (1942).
24.
Yu. M. Kagan, “Boiling kinetics of a pure liquid,” Zh. Fiz. Khim. 34, 9298 (1960).
25.
J. W. Gibbs, The Collected Works. Vol. 2: Thermodynamics (Longmans and Green, New York, London, Toronto, 1928).
26.
J. W. Cahn and J. F. Hilliard, “Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid,” J. Chem. Phys. 31, 688699 (1959).
http://dx.doi.org/10.1063/1.1730447
27.
J. D. van der Waals and Ph. Kohnstamm, Lehrbuch der Thermodynamik (Johann-Ambrosius-Barth Berlag, Leipzig, Amsterdam, 1908).
28.
V. G. Baidakov and A. M. Kaverin, “The thermodynamic properties of superheated liquid nitrogen: Ultrasound velocity,” Teplofiz. Vys. Temp. 32, 837841 (1994).
29.
V. V. Sychev, A. A. Vasserman, A. D. Kozlov et al., Thermodynamic Properties of Nitrogen (Hemisphere Publishing Corp., Washington, 1987).
30.
V. G. Baidakov, K. V. Khvostov, and G. N. Muratov, “Surface tension of nitrogen, oxygen, and methane over a wilde range of temperature,” Zh. Fiz. Khim. 56, 814817 (1982).
31.
V. G. Baidakov and K. S. Bobrov, “Spontaneous cavitation in a Lennard-Jones liquid at negative pressures,” J. Chem. Phys. 140, 184506 (2014).
http://dx.doi.org/10.1063/1.4874644
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/5/10.1063/1.4951703
Loading
/content/aip/journal/pof2/28/5/10.1063/1.4951703
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/5/10.1063/1.4951703
2016-05-26
2016-09-29

Abstract

The method of pulsed liquid superheating in a tension wave that forms when a compression pulse is reflected from the liquid free surface has been used to investigate the kinetics of spontaneous cavitation in liquid nitrogen. The limiting tensile stress of nitrogen corresponding to nucleation rates = 1020 − 1022 s−1 m−3 and the slope of the temperature dependence of the nucleation rate = ln/ have been determined by experiment. The results of experiments are compared with classical nucleation theory (CNT) and a modified classical nucleation theory (MCNT), which takes into account the size dependence of the properties of a critical bubble. It has been noted that experimental data are in better agreement with the results of MCNT than with those of CNT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/5/1.4951703.html;jsessionid=Lr9lxOtjZb8jmWdjd_r_DpaV.x-aip-live-02?itemId=/content/aip/journal/pof2/28/5/10.1063/1.4951703&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/5/10.1063/1.4951703&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/5/10.1063/1.4951703'
Right1,Right2,Right3,