Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/8/10.1063/1.4958975
1.
N. Asproulis and D. Drikakis, “Wall-mass effects on hydrodynamic boundary slip,” Phys. Rev. E 84(3), 031504 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.031504
2.
N. Asproulis and D. Drikakis, “Boundary slip dependency on surface stiffness,” Phys. Rev. E 81(6), 061503 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.061503
3.
R. S. Voronov, D. V. Papavassiliou, and L. L. Lee, “Slip length and contact angle over hydrophobic surfaces,” Chem. Phys. Lett. 441(4), 273276 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.05.013
4.
N. V. Priezjev, A. A. Darhuber, and S. M. Troian, “Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations,” Phys. Rev. E 71(4), 041608 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041608
5.
N. V. Priezjev, “Effect of surface roughness on rate-dependent slip in simple fluids,” J. Chem. Phys. 127(14), 144708 (2007).
http://dx.doi.org/10.1063/1.2796172
6.
F. Sofos, T. E. Karakasidis, and A. Liakopoulos, “Effect of wall roughness on shear viscosity and diffusion in nanochannels,” Int. J. Heat Mass Transfer 53(19), 38393846 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.037
7.
B.-Y. Cao, M. Chen, and Z.-Y. Guo, “Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation,” Int. J. Eng. Sci. 44(13), 927937 (2006).
http://dx.doi.org/10.1016/j.ijengsci.2006.06.005
8.
D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids (1994-present) 14(3), L9L12 (2002).
http://dx.doi.org/10.1063/1.1432696
9.
C. Zhang and Y. Chen, “Slip behavior of liquid flow in rough nanochannels,” Chem. Eng. Process.: Process Intensif. 85, 203208 (2014).
http://dx.doi.org/10.1016/j.cep.2014.09.003
10.
N. V. Priezjev and S. M. Troian, “Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: Molecular-scale simulations versus continuum predictions,” J. Fluid Mech. 554, 2546 (2006).
http://dx.doi.org/10.1017/S0022112006009086
11.
Y. Chen, C. Zhang, M. Shi, and G. P. Peterson, “Slip boundary for fluid flow at rough solid surfaces,” Appl. Phys. Lett. 100(7), 074102 (2012).
http://dx.doi.org/10.1063/1.3685490
12.
C. Bora, E. Flater, M. Street, J. Redmond, M. Starr, R. Carpick, and M. Plesha, “Multiscale roughness and modeling of MEMS interfaces,” Tribol. Lett. 19(1), 3748 (2005).
http://dx.doi.org/10.1007/s11249-005-4263-8
13.
S. Medina and D. Dini, “A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale,” Int. J. Solids Struct. 51(14), 26202632 (2014).
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.033
14.
D. Stephenson, A. Patronis, D. M. Holland, and D. A. Lockerby, “Generalizing Murray’s law: An optimization principle for fluidic networks of arbitrary shape and scale,” J. Appl. Phys. 118(17), 174302 (2015).
http://dx.doi.org/10.1063/1.4935288
15.
D. M. Holland, M. K. Borg, D. A. Lockerby, and J. M. Reese, “Enhancing nano-scale computational fluid dynamics with molecular pre-simulations: Unsteady problems and design optimisation,” Comput. Fluids 115, 4653 (2015).
http://dx.doi.org/10.1016/j.compfluid.2015.03.023
16.
K. Zografos, R. W. Barber, D. R. Emerson, and M. S. Oliveira, “A design rule for constant depth microfluidic networks for power-law fluids,” Microfluid. Nanofluid. 19(3), 737749 (2015).
http://dx.doi.org/10.1007/s10404-015-1598-9
17.
M. Ausloos and D. Berman, “A multivariate Weierstrass-Mandelbrot function,” Proc. R. Soc. London, Ser. A 400(1819), 331350 (1985).
http://dx.doi.org/10.1098/rspa.1985.0083
18.
W. Yan and K. Komvopoulos, “Contact analysis of elastic-plastic fractal surfaces,” J. Appl. Phys. 84(7), 36173624 (1998).
http://dx.doi.org/10.1063/1.368536
19.
Y. Harpaz, M. Gerstein, and C. Chothia, “Volume changes on protein folding,” Structure 2(7), 641649 (1994).
http://dx.doi.org/10.1016/S0969-2126(00)00065-4
20.
S. Bernardi, B. Todd, and D. J. Searles, “Thermostating highly confined fluids,” J. Chem. Phys. 132(24), 244706 (2010).
http://dx.doi.org/10.1063/1.3450302
21.
K. Binder, J. Horbach, W. Kob, W. Paul, and F. Varnik, “Molecular dynamics simulations,” J. Phys.: Condens. Matter 16(5), S429 (2004).
http://dx.doi.org/10.1088/0953-8984/16/5/006
22.
S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comp. Phys. 117, 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
23.
N. J. Lund, X. P. Zhang, K. Mahelona, and S. C. Hendy, “Calculation of effective slip on rough chemically heterogeneous surfaces using a homogenization approach,” Phys. Rev. E 86(4), 046303 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.046303
24.
M. V. Berry and Z. V. Lewis, “On the Weierstrass-Mandelbrot fractal function,” Proc. R. Soc. London, Ser. A 370, 459484 (1980).
http://dx.doi.org/10.1098/rspa.1980.0044
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/8/10.1063/1.4958975
Loading
/content/aip/journal/pof2/28/8/10.1063/1.4958975
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/8/10.1063/1.4958975
2016-08-01
2016-10-01

Abstract

This paper investigates the effects of surface roughness on nanoflows using molecular dynamics simulations. A fractal model is employed to model wall roughness, and simulations are performed for liquid argon confined by two solid walls. It is shown that the surface roughness reduces the velocity in the proximity of the walls with the reduction being accentuated when increasing the roughness depth and wettability of the solid wall. It also makes the flow three-dimensional and anisotropic. In flows over idealized smooth surfaces, the liquid forms parallel, well-spaced layers, with a significant gap between the first layer and the solid wall. Rough walls distort the orderly distribution of fluid layers resulting in an incoherent formation of irregularly shaped fluid structures around and within the wall cavities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/8/1.4958975.html;jsessionid=T1Y1M_Ivagok5JisKDoZx6-I.x-aip-live-06?itemId=/content/aip/journal/pof2/28/8/10.1063/1.4958975&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/8/10.1063/1.4958975&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4958975'
Right1,Right2,Right3,