Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/8/10.1063/1.4960390
1.
N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, UK, 2000).
2.
A. N. Lipatnikov and J. Chomiak, “Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations,” Prog. Energy Combust. Sci. 28, 1 (2002).
http://dx.doi.org/10.1016/S0360-1285(01)00007-7
3.
D. Veynante and L. Vervisch, “Turbulent combustion modeling,” Prog. Energy Combust. Sci. 28, 193 (2002).
http://dx.doi.org/10.1016/S0360-1285(01)00017-X
4.
T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed. (Edwards, Philadelphia, 2005).
5.
R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll, “Paradigms in turbulent combustion research,” Proc. Combust. Inst. 30, 21 (2005).
http://dx.doi.org/10.1016/j.proci.2004.08.273
6.
N. Chakraborty, M. Champion, A. Mura, and N. Swaminathan, “Scalar-dissipation-rate approach,” in Turbulent Premixed Flames, edited by N. Swaminathan and K. N. C. Bray (Cambridge University Press, Cambridge, UK, 2011), pp. 76-102.
7.
R. Borghi, “Turbulent premixed combustion: Further discussions of the scales of fluctuations,” Combust. Flame 80, 304 (1990).
http://dx.doi.org/10.1016/0010-2180(90)90106-2
8.
S. B. Pope, “The evolution of surface in turbulence,” Int. J. Eng. Sci. 26, 445 (1988).
http://dx.doi.org/10.1016/0020-7225(88)90004-3
9.
S. Candel and T. Poinsot, “Flame stretch and the balance equation for the flame area,” Combust. Sci. Technol. 170, 1 (1990).
http://dx.doi.org/10.1080/00102209008951608
10.
A. Trouvé and T. Poinsot, “Evolution equation for flame surface density in turbulent premixed combustion,” J. Fluid Mech. 278, 1 (1994).
http://dx.doi.org/10.1017/S0022112094003599
11.
A. N. Lipatnikov and J. Chomiak, “Molecular transport effects on turbulent flame propagation and structure,” Prog. Energy Combust. Sci. 31, 1 (2005).
http://dx.doi.org/10.1016/j.pecs.2004.07.001
12.
A. Lipatnikov, Fundamentals of Premixed Turbulent Combustion (CRC Press, Boca Raton, FL, 2012).
13.
G. Dixon-Lewis, “Structure of laminar flames,” Proc. Combust. Inst. 23, 305 (1990).
http://dx.doi.org/10.1016/S0082-0784(06)80274-2
14.
C. K. Law, Combustion Physics (Cambridge University Press, Cambridge, UK, 2006).
15.
P. Clavin, “Dynamical behavior of premixed flame fronts in laminar and turbulent flows,” Prog. Energy Combust. Sci. 11, 1 (1985).
http://dx.doi.org/10.1016/0360-1285(85)90012-7
16.
M. Matalon, “Intrinsic flame instabilities in premixed and nonpremixed combustion,” Annu. Rev. Fluid Mech. 39, 163 (2007).
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092153
17.
P. A. Libby and K. N. C. Bray, “Implications of the laminar flamelet model in premixed turbulent combustion,” Combust. Flame 39, 33 (1980).
http://dx.doi.org/10.1016/0010-2180(80)90004-8
18.
J. F. Driscoll, “Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities,” Prog. Energy Combust. Sci. 34, 91 (2008).
http://dx.doi.org/10.1016/j.pecs.2007.04.002
19.
S. Nishiki, T. Hasegawa, R. Borghi, and R. Himeno, “Modeling of flame-generated turbulence based on direct numerical simulation databases,” Proc. Combust. Inst. 29, 2017 (2002).
http://dx.doi.org/10.1016/S1540-7489(02)80246-2
20.
S. Nishiki, T. Hasegawa, R. Borghi, and R. Himeno, “Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases,” Combust. Theory Modell. 10, 39 (2006).
http://dx.doi.org/10.1080/13647830500307477
21.
A. N. Lipatnikov, J. Chomiak, V. A. Sabelnikov, S. Nishiki, and T. Hasegawa, “Unburned mixture fingers in premixed turbulent flames,” Proc. Combust. Inst. 35, 1401 (2015).
http://dx.doi.org/10.1016/j.proci.2014.06.081
22.
N. Chakraborty, G. Hartung, M. Katragadda, and C. F. Kaminski, “Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data,” Combust. Flame 158, 1372 (2011).
http://dx.doi.org/10.1016/j.combustflame.2010.11.014
23.
N. Chakraborty and E. R. Hawkes, “Determination of 3D flame surface density variables from 2D measurements: Validation using direct numerical simulation,” Phys. Fluids 23, 065113 (2011).
http://dx.doi.org/10.1063/1.3601483
24.
M. Klein, C. Kasten, Y. Gao, and N. Chakraborty, “A-priori direct numerical simulation assessment of sub-grid scale stress tensor closures for turbulent premixed combustion,” Comput. Fluids 122, 1 (2015).
http://dx.doi.org/10.1016/j.compfluid.2015.08.003
25.
P. Clavin and G. Joulin, “High-frequency response of premixed flames to weak stretch and curvature: A variable density analysis,” Combust. Theory Modell. 1, 429 (1997).
http://dx.doi.org/10.1080/713665342
26.
P. Venkateswaran, A. Marshall, J. Seitzman, and T. Lieuwen, “Pressure and fuel effects on turbulent consumption speeds of H2/CO blends,” Proc. Combust. Inst. 34, 1527 (2013).
http://dx.doi.org/10.1016/j.proci.2012.06.077
27.
V. R. Kuznetsov and V. A. Sabelnikov, Turbulence and Combustion (Hemisphere Publishing Corporation, New York, 1990).
28.
P. Venkateswaran, A. Marshall, J. Seitzman, and T. Lieuwen, “Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts,” Combust. Flame 162, 375 (2015).
http://dx.doi.org/10.1016/j.combustflame.2014.07.028
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/8/10.1063/1.4960390
Loading
/content/aip/journal/pof2/28/8/10.1063/1.4960390
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/8/10.1063/1.4960390
2016-08-03
2016-12-04

Abstract

New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/8/1.4960390.html;jsessionid=-ZzIIvacWjkF4zWLeXLHS6sk.x-aip-live-03?itemId=/content/aip/journal/pof2/28/8/10.1063/1.4960390&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/8/10.1063/1.4960390&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4960390'
Right1,Right2,Right3,