Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/8/10.1063/1.4960627
1.
B. Albijanic, O. Ozdemir, A. Nguyen, and D. Bradshaw, “A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation,” Adv. Colloid Interface Sci. 159, 121 (2010).
http://dx.doi.org/10.1016/j.cis.2010.04.003
2.
D. Verrelli, P. Koh, and A. Nguyen, “Particle-bubble interaction and attachment in flotation,” Chem. Eng. Sci. 66, 59105921 (2011).
http://dx.doi.org/10.1016/j.ces.2011.08.016
3.
Z. Huang, D. Legendre, and P. Guiraud, “Effect of interface contamination on particle-bubble collision,” Chem. Eng. Sci. 68, 118 (2012).
http://dx.doi.org/10.1016/j.ces.2011.07.045
4.
S. Aland, J. Lowengrub, and A. Voigt, “Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model,” Phys. Rev. E 86, 046321 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.046321
5.
Y. Choi and P. Anderson, “Cahn-Hilliard modeling of particles suspended in two-phase flows,” Int. J. Numer. Methods Fluids 69, 9951015 (2012).
http://dx.doi.org/10.1002/fld.2623
6.
N. Jaensson, M. Hulsen, and P. Anderson, “Stokes-Cahn-Hilliard formulations and simulations of two-phase flows with suspended rigid particles,” Comput. Fluids 111, 117 (2015).
http://dx.doi.org/10.1016/j.compfluid.2014.12.023
7.
M. Fujita, O. Koike, and Y. Yamaguchi, “Direct simulation of drying colloidal suspension on substrate using immersed free surface model,” J. Comput. Phys. 281, 421448 (2015).
http://dx.doi.org/10.1016/j.jcp.2014.10.042
8.
K. Connington, T. Lee, and J. Morris, “Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems,” J. Comput. Phys. 283, 453477 (2015).
http://dx.doi.org/10.1016/j.jcp.2014.11.044
9.
A. Kawasaki, J. Onishi, Y. Chen, and H. Ohashi, “A lattice Boltzmann model for contact-line motions,” Comput. Math. Appl. 55, 14921502 (2008).
http://dx.doi.org/10.1016/j.camwa.2007.08.026
10.
A. Joshi and Y. Sun, “Multiphase lattice Boltzmann method for particle suspensions,” Phys. Rev. E 79, 066703 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.066703
11.
F. Jansen and J. Harting, “From bijels to Pickering emulsions: A lattice Boltzmann study,” Phys. Rev. E 83, 046707 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.046707
12.
Y. Nakayama and R. Yamamoto, “Simulation method to resolve hydrodynamic interactions in colloidal dispersions,” Phys. Rev. E 71, 036707 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036707
13.
D. Anderson, G. McFadden, and A. Wheeler, “Diffuse interface model methods in fluid mechanics,” Annu. Rev. Fluid Mech. 30, 139165 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
14.
J. Molina and R. Yamamoto, “Direct numerical simulations of rigid body dispersions. I. Mobility/friction tensors of assemblies of spheres,” J. Chem. Phys. 139, 18 (2013).
http://dx.doi.org/10.1063/1.4844115
15.
V. Badalassi, H. Ceniceros, and S. Banerjee, “Computation of multiphase systems with phase field models,” J. Comput. Phys. 190, 371397 (2003).
http://dx.doi.org/10.1016/S0021-9991(03)00280-8
16.
T. Araki and H. Tanaka, “Wetting-induced depletion interaction between particles in a phase-separating liquid mixture,” Phys. Rev. E 73, 061506 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.061506
17.
M. Bawendi and K. Freed, “Systematic corrections to Flory-Huggins theory: Polymer-solvent-void systems and binary blend-void systems,” J. Chem. Phys. 88, 27412756 (1988).
http://dx.doi.org/10.1063/1.454005
18.
P. Millett, “Electric-field induced alignment of nanoparticle-coated channels in thin-film polymer membranes,” J. Chem. Phys. 140, 17 (2014).
http://dx.doi.org/10.1063/1.4870471
19.
H. Shinto, “Computer simulation of wetting, capillary forces, and particle-stabilized emulsions: From molecular-scale to mesoscale modeling,” Adv. Powder Technol. 23, 538547 (2012).
http://dx.doi.org/10.1016/j.apt.2012.06.003
20.
F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, and M. Quintard, “Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows,” Transp. Porous Media 82, 463483 (2010).
http://dx.doi.org/10.1007/s11242-009-9408-z
21.
G. Lecrivain, R. Rayan, A. Hurtado, and U. Hampel, “Using quasi-DNS to investigate the deposition of elongated aerosol particles in a wavy channel flow,” Comput. Fluids 124, 7885 (2016).
http://dx.doi.org/10.1016/j.compfluid.2015.10.012
22.
Y. Nakayama, K. Kim, and R. Yamamoto, “Simulating (electro)hydrodynamic effects in colloidal dispersions: Smoothed profile method,” Eur. Phys. J. E 26, 361368 (2008).
http://dx.doi.org/10.1140/epje/i2007-10332-y
23.
X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” J. Comput. Phys. 115, 200212 (1994).
http://dx.doi.org/10.1006/jcph.1994.1187
24.
X. Luo, M. Maxey, and G. Karniadakis, “Smoothed profile method for particulate flows: Error analysis and simulations,” J. Comput. Phys. 228, 17501769 (2009).
http://dx.doi.org/10.1016/j.jcp.2008.11.006
25.
P. Millett and Y. Wang, “Diffuse-interface field approach to modeling arbitrarily-shaped particles at fluid-fluid interfaces,” J. Colloid Interface Sci. 353, 4651 (2011).
http://dx.doi.org/10.1016/j.jcis.2010.09.021
26.
A. Nguyen, “New method and equations for determining attachment tenacity and particle size limit in flotation,” Int. J. Miner. Process. 68, 167182 (2003).
http://dx.doi.org/10.1016/S0301-7516(02)00069-8
27.
G. Lecrivain, G. Petrucci, M. Rudolph, U. Hampel, and R. Yamamoto, “Attachment of solid elongated particles on the surface of a stationary gas bubble,” Int. J. Multiphase Flow 71, 8393 (2015).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.01.002
28.
Z. Brabcova, T. Karapantsios, M. Kostoglou, P. Basarova, and K. Matis, “Bubble-particle collision interaction in flotation systems,” Colloids Surf., A 473, 95103 (2015).
http://dx.doi.org/10.1016/j.colsurfa.2014.11.040
29.
P. Basarova and M. Hubicka, “The collision efficiency of small bubbles with large particles,” Miner. Eng. 66-68, 230233 (2014).
http://dx.doi.org/10.1016/j.mineng.2014.06.006
30.
H. Hasimoto, “On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres,” J. Fluid Mech. 5, 317328 (1959).
http://dx.doi.org/10.1017/S0022112059000222
31.
A. Sangani and A. Acrivos, “Slow flow through a periodic array of spheres,” Int. J. Multiphase Flow 8, 343360 (1982).
http://dx.doi.org/10.1016/0301-9322(82)90047-7
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/8/10.1063/1.4960627
Loading
/content/aip/journal/pof2/28/8/10.1063/1.4960627
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/8/10.1063/1.4960627
2016-08-11
2016-09-27

Abstract

A numerical extension of the “smooth profile method” is presently suggested to simulate the attachment of a colloidal particle to the surface of an immersed bubble. In this approach, the two fluid-particle boundaries and the fluidic boundary are replaced with diffuse interfaces. The method is tested under various capillary numbers. Upon attachment to a stable bubble, it is found that the method is capable of reproducing the three microprocesses associated with the particle attachment. The change in the trajectory as the particle approaches the fluidic interface, the collision process, and the sliding down the bubble surface are all captured. Potential application of the present method shows great promise in the field of froth flotation, where the capture of hydrophobic particles by rising bubbles is of primary importance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/8/1.4960627.html;jsessionid=rdP8STw2iT7hoDc9vnzfVRBp.x-aip-live-02?itemId=/content/aip/journal/pof2/28/8/10.1063/1.4960627&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/8/10.1063/1.4960627&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4960627'
Right1,Right2,Right3,