Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/8/10.1063/1.4961255
1.
G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113133 (1959).
http://dx.doi.org/10.1017/S002211205900009X
2.
A. Briard, T. Gomez, P. Sagaut, and S. Memari, “Passive scalar decay laws in isotropic turbulence: Prandtl effects,” J. Fluid Mech. 784, 274303 (2015).
http://dx.doi.org/10.1017/jfm.2015.575
3.
A. Briard and T. Gomez, “Passive scalar convective-diffusive subrange for low Prandtl numbers in isotropic turbulence,” Phys. Rev. E 91, 011001 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.011001
4.
G. Comte-Bellot and S. Corrsin, “The use of a contraction to improve the isotropy of a grid generated turbulence,” J. Fluid Mech. 25, 657 (1966).
http://dx.doi.org/10.1017/S0022112066000338
5.
C. Scalo, U. Piomelli, and L. Boegman, “High-Schmidt-number mass transport mechanisms from a turbulent flow to absorbing sediments,” Phys. Fluids 24, 4178 (2012).
http://dx.doi.org/10.1063/1.4739064
6.
P. K. Yeung, S. Xu, and K. R. Sreenivasan, “Schmidt number effects on turbulent transport with uniform mean scalar gradient,” Phys. Fluids 14, 4178 (2002).
http://dx.doi.org/10.1063/1.1517298
7.
J. Schumacher, K. R. Sreenivasan, and P. K. Yeung, “Schmidt number dependence of derivative moments for quasi-static straining motion,” J. Fluid Mech. 479, 221230 (2003).
http://dx.doi.org/10.1017/S0022112003003756
8.
P. K. Yeung, S. Xu, D. A. Donzis, and K. R. Sreenivasan, “Simulations of three-dimensional turbulent mixing for schmidt numbers of the order 1000,” Flow, Turbul. Combust. 72, 333347 (2004).
http://dx.doi.org/10.1023/B:APPL.0000044400.66539.78
9.
M. S. Borgas, B. L. Sawford, S. Xu, D. A. Donzis, and P. K. Yeung, “High Schmidt number scalars in turbulence: Structure functions and Lagrangian theory,” Phys. Fluids 14, 3888 (2004).
http://dx.doi.org/10.1063/1.1780550
10.
D. A. Donzis and P. K. Yeung, “Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence,” Physica D 239, 12781287 (2010).
http://dx.doi.org/10.1016/j.physd.2009.09.024
11.
K. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc ≥ 1,” J. Fluid Mech. 317, 2171 (1996).
http://dx.doi.org/10.1017/S0022112096000651
12.
P. L. Miller and P. E. Dimotakis, “Measurements of scalar power spectra in high Schmidt number turbulent jets,” J. Fluid Mech. 308, 129146 (1996).
http://dx.doi.org/10.1017/S0022112096001425
13.
T. M. Lavertu, L. Mydlarski, and S. J. Gaskin, “Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet,” J. Fluid Mech. 612, 439475 (2008).
http://dx.doi.org/10.1017/S0022112008003224
14.
M. Lesieur, Turbulence in Fluids (Springer, New York, 2008).
15.
W. J. T. Bos, L. Chevillard, J. F. Scott, and R. Rubinstein, “Reynolds number effect on the velocity increment skewness in isotropic turbulence,” Phys. Fluids 24, 015108 (2012).
http://dx.doi.org/10.1063/1.3678338
16.
M. Meldi and P. Sagaut, “Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence,” J. Turbul. 14, 2453 (2013).
http://dx.doi.org/10.1080/14685248.2013.850171
17.
T. Zhou, R. A. Antonia, L. Danaila, and F. Anselmet, “Transport equations for the mean energy and temperature dissipation rates in grid turbulence,” Exp. Fluids 28, 143151 (2000).
http://dx.doi.org/10.1007/s003480050018
18.
J. R. Ristorcelli, “Passive scalar mixing: Analytic study of time scale ratio, variance, and mix rate,” Phys. Fluids 18, 075101 (2006).
http://dx.doi.org/10.1063/1.2214704
19.
R. M. Kerr, “Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence,” J. Fluid Mech. 153, 3158 (1985).
http://dx.doi.org/10.1017/S0022112085001136
20.
R. A. Antonia and P. Orlandi, “Similarity of decaying isotropic turbulence with a passive scalar,” J. Fluid Mech. 505, 123151 (2004).
http://dx.doi.org/10.1017/S0022112004008456
21.
T. Gotoh, D. Fukayama, and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation,” Phys. Fluids 14, 10651081 (2002).
http://dx.doi.org/10.1063/1.1448296
22.
W. K. George, “The decay of homogeneous isotropic turbulence,” Phys. Fluids A 4, 1492 (1992).
http://dx.doi.org/10.1063/1.858423
23.
J. Schumacher, K. R. Sreenivasan, and P. K. Yeung, “Derivative moments in turbulent shear flows,” Phys. Fluids 15, 84 (2003).
http://dx.doi.org/10.1063/1.1524627
24.
W. K. George, “Self-preservation of temperature fluctuations in isotropic turbulence,” in Studies in Turbulence, edited by T. B. Gatski, C. G. Speziale, and S. Sarkar (Springer, New York, 1992), pp. 514528.
http://dx.doi.org/10.1007/978-1-4612-2792-2_38
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/8/10.1063/1.4961255
Loading
/content/aip/journal/pof2/28/8/10.1063/1.4961255
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/8/10.1063/1.4961255
2016-08-25
2016-12-07

Abstract

The mixed-derivative skewness of a passive scalar field in high Reynolds and Prandtl numbers decaying homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal Markovian closure, for ≥ 103 up to = 105. A convergence of for ≥ 103 is observed for any high enough Reynolds number. This asymptotic high regime can be interpreted as a saturation of the mixing properties of the flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the influence of large scales initial conditions are investigated as well.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/8/1.4961255.html;jsessionid=Z6bw4aCtLllIUihk3cWaSJgW.x-aip-live-06?itemId=/content/aip/journal/pof2/28/8/10.1063/1.4961255&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/8/10.1063/1.4961255&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4961255'
Right1,Right2,Right3,