Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/8/10.1063/1.4961490
1.
A. A. Darhuber and S. M. Troian, “Principles of microfluidic actuation by modulation of surface stresses,” Annu. Rev. Fluid Mech. 37, 425455 (2005).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122052
2.
K. Katoh, T. Wakimoto, and S. Nitta, “A study on capillary flow under the effect of dynamic wetting,” J. Jpn. Soc. Exp. Mech. 10(Special Issue), s62s66 (2010).
http://dx.doi.org/10.11395/jjsem.10.s62
3.
Y. Yamamoto, T. Ito, T. Wakimoto, and K. Katoh, “Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition,” Int. J. Multiphase Flow 51, 2232 (2013).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.12.002
4.
P. G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys. 57, 827863 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.827
5.
L. Leger and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55, 431486 (1992).
http://dx.doi.org/10.1088/0034-4885/55/4/001
6.
D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys. 81, 739805 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.739
7.
J. F. Joanny and P. G. de Gennes, “A model for contact angle hysteresis,” J. Chem. Phys. 81, 552562 (1984).
http://dx.doi.org/10.1063/1.447337
8.
P. G. de Gennes, “Physique des surfaces et des interfaces — Dynamique d’une ligne triple,” C. R. Acad. Sci. Paris, II 302, 731733 (1986).
9.
G. D. Nadkarni and S. Garoff, “An investigation of microscopic aspects of contact angle hysteresis: Pinning of the contact line on a single defect,” Europhys. Lett. 20, 523528 (1992).
http://dx.doi.org/10.1209/0295-5075/20/6/009
10.
J. A. Marsh and A. M. Cazabat, “Dynamics of contact line depinning from a single defect,” Phys. Rev. Lett. 71, 24332436 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2433
11.
S. Moulinet, C. Guthmann, and E. Rolley, “Dissipation in the dynamics of a moving contact line: Effect of the substrate disorder,” Eur. Phys. J. B 37, 127136 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00037-9
12.
D. Ertaş and M. Kardar, “Critical dynamics of contact line depinning,” Phys. Rev. E 49, R2532R2535 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.R2532
13.
E. Raphaël and P. G. de Gennes, “Dynamics of wetting with nonideal surfaces. The single defect problem,” J. Chem. Phys. 90, 75777584 (1989).
http://dx.doi.org/10.1063/1.456191
14.
J. F. Joanny and M. O. Robbins, “Motion of a contact line on a heterogeneous surface,” J. Chem. Phys. 92, 32063212 (1990).
http://dx.doi.org/10.1063/1.458579
15.
J. M. Schwarz and D. S. Fisher, “Depinning with dynamic stress overshoots: Mean field theory,” Phys. Rev. Lett. 87, 096107-1096107-4 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.096107
16.
V. S. Nikolayev, S. L. Gavrilyuk, and H. Gouin, “Modeling of the moving deformed triple contact line: Influence of the fluid inertia,” J. Colloid Interface Sci. 302, 605612 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.06.046
17.
E. Schäffer and P. Wong, “Contact line dynamics near the pinning threshold: A capillary rise and fall experiment,” Phys. Rev. E 61, 52575277 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5257
18.
J. Bico, C. Tordeux, and D. Quéré, “Rough wetting,” Europhys. Lett. 55, 214220 (2001).
http://dx.doi.org/10.1209/epl/i2001-00402-x
19.
S. M. M. Ramos, E. Charlaix, A. Benyagoub, and M. Toulemonde, “Wetting on nanorough surfaces,” Phys. Rev. E 67, 031604-1031604-6 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.031604
20.
T. Cubaud and M. Fermigier, “Advancing contact lines on chemically patterned surfaces,” J. Colloid Interface Sci. 269, 171177 (2004).
http://dx.doi.org/10.1016/j.jcis.2003.08.008
21.
K. Katoh, T. Wakimoto, Y. Yamamoto, and T. Ito, “Dynamic wetting behavior of a triple-phase contact line in several experimental systems,” Exp. Therm. Fluid Sci. 60, 354360 (2015).
http://dx.doi.org/10.1016/j.expthermflusci.2014.05.006
22.
X. P. Wang, T. Qian, and P. Sheng, “Moving contact line on chemically patterned surfaces,” J. Fluid Mech. 605, 5978 (2008).
http://dx.doi.org/10.1017/S0022112008001456
23.
T. Qian, X. P. Wang, and P. Sheng, “Molecular scale contact line hydrodynamics of immiscible flows,” Phys. Rev. E 68, 016306-1016306-15 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.016306
24.
W. Ren and W. E, “Contact line dynamics on heterogeneous surfaces,” Phys. Fluids 23, 072103-1072103-9 (2011).
http://dx.doi.org/10.1063/1.3609817
25.
Y. Yamamoto, K. Tokieda, T. Wakimoto, T. Ito, and K. Katoh, “Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic–microscopic contact angle relation and generalized Navier boundary condition,” Int. J. Multiphase Flow 59, 106112 (2014).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.10.018
26.
S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompressible, multi-fluid flows,” J. Comput. Phys. 100, 2537 (1992).
http://dx.doi.org/10.1016/0021-9991(92)90307-K
27.
P. G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2003).
28.
S. Shin and D. Juric, “Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity,” J. Comput. Phys. 180, 427470 (2002).
http://dx.doi.org/10.1006/jcph.2002.7086
29.
S. Shin and D. Juric, “High order level contour reconstruction method,” J. Mech. Sci. Technol. 21, 311326 (2007).
http://dx.doi.org/10.1007/BF02916292
30.
Y. Yamamoto and T. Uemura, “Numerical simulation of multiphase flows by level contour reconstruction method (improvement of volume conservation property),” Trans. Jpn. Soc. Mech. Eng. 77, 237246 (2011) (in Japanese).
http://dx.doi.org/10.1299/kikaib.77.237
31.
C. S. Peskin, “The immersed boundary method,” Acta Numer. 11, 479517 (2002).
http://dx.doi.org/10.1017/S0962492902000077
32.
S. Afkhami, S. Zaleski, and M. Bussmann, “A mesh-dependent model for applying dynamic contact angles to VOF simulations,” J. Comput. Phys. 228, 53705389 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.04.027
33.
J.-B. Dupont and D. Legendre, “Numerical simulation of static and sliding drop with contact angle hysteresis,” J. Comput. Phys. 229, 24532478 (2010).
http://dx.doi.org/10.1016/j.jcp.2009.07.034
34.
Y. Sui and P. D. M. Spelt, “An efficient computational model for macroscale simulations of moving contact lines,” J. Comput. Phys. 242, 3752 (2013).
http://dx.doi.org/10.1016/j.jcp.2013.02.005
35.
Y. Sui, H. Ding, and P. D. M. Spelt, “Numerical simulations of flows with moving contact lines,” Annu. Rev. Fluid Mech. 46, 97119 (2014).
http://dx.doi.org/10.1146/annurev-fluid-010313-141338
36.
J. H. Snoeijer and B. Andreotti, “Moving contact lines: Scales, regimes, and dynamical transitions,” Annu. Rev. Fluid Mech. 45, 269292 (2013).
http://dx.doi.org/10.1146/annurev-fluid-011212-140734
37.
R. Cox, “The dynamics of the spreading of liquids on a solid surface. I. Viscous flow,” J. Fluid Mech. 168, 169194 (1986).
http://dx.doi.org/10.1017/S0022112086000332
38.
D. Li and A. W. Neumann, “Thermodynamic status of contact angles,” in Applied Surface Thermodynamics, edited by A. W. Neumann and J. K. Spelt (Marcel Dekker, 1996), pp. 109168.
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/8/10.1063/1.4961490
Loading
/content/aip/journal/pof2/28/8/10.1063/1.4961490
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/8/10.1063/1.4961490
2016-08-31
2016-09-28

Abstract

In this study, the dynamics of a contact line passing a single defect, which was represented by a locally wettable part (whose static contact angle is less than the other part, namely, chemically heterogeneous and physically flat part), was analyzed using numerical simulations employing the front-tracking method and the generalized Navier boundary condition. We observed that the contact line was distorted with a logarithmic shape far from the defect; however, the distortion was dependent on the wall velocity. The apparent (averaged) dynamic contact angle of the wall with a defect was evaluated using a macroscopic energy balance. The apparent dynamic contact angles estimated from the energy balance agree well with the arithmetic averaged angles obtained from the present simulations. The macroscopic energy balance is useful to consider the effect of heterogeneity or roughness of the wall on the relation between the dynamic contact angle and contact line speed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/8/1.4961490.html;jsessionid=DJu8jFWEqPa2XTqewo3En23Y.x-aip-live-02?itemId=/content/aip/journal/pof2/28/8/10.1063/1.4961490&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/8/10.1063/1.4961490&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/8/10.1063/1.4961490'
Right1,Right2,Right3,