Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/9/10.1063/1.4961078
1.
F. Hussain and K. Duraisamy, “Mechanics of viscous vortex reconnection,” Phys. Fluids 23, 021701 (2011).
http://dx.doi.org/10.1063/1.3532039
2.
S. Kida and M. Takaoka, “Vortex reconnection,” Annu. Rev. Fluid Mech. 26, 169177 (1994).
http://dx.doi.org/10.1146/annurev.fl.26.010194.001125
3.
P. R. Spalart, “Airplane trailing vortices,” Annu. Rev. Fluid Mech. 30, 107138 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.107
4.
F. Hussain, “Coherent structures–reality and myth,” Phys. Fluids 26, 28162850 (1983).
http://dx.doi.org/10.1063/1.864048
5.
F. Hussain, “Coherent structures and turbulence,” J. Fluid Mech. 173, 303356 (1986).
http://dx.doi.org/10.1017/S0022112086001192
6.
W. T. Ashurst and D. I. Meiron, “Numerical study of vortex reconnection,” Phys. Rev. Lett. 58, 16321635 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1632
7.
S. Kida, M. Takaoka, and F. Hussain, “Collision of two vortex rings,” J. Fluid Mech. 230, 583646 (1991).
http://dx.doi.org/10.1017/S0022112091000903
8.
H. Aref and I. Zawadzki, “Linking of vortex rings,” Nature 354, 5053 (1991).
http://dx.doi.org/10.1038/354050a0
9.
S. Kida, M. Takaoka, and F. Hussain, “Reconnection of two vortex rings,” Phys. Fluids A 1, 630632 (1989).
http://dx.doi.org/10.1063/1.857436
10.
M. Melander and N. Zabusky, “Interaction and apparent reconnection of 3D vortex tubes via direct numerical simulations,” Fluid Dyn. Res. 3, 247250 (1988).
http://dx.doi.org/10.1016/0169-5983(88)90073-1
11.
N. J. Zabusky and M. V. Melander, “Three-dimensional vortex tube reconnection: Morphology for orthogonally-offset tubes,” Physica D 37, 555562 (1989).
http://dx.doi.org/10.1016/0167-2789(89)90160-7
12.
O. N. Boratav, R. B. Pelz, and N. J. Zabusky, “Reconnection in orthogonally interacting vortex tubes: Direct numerical simulations and quantifications,” Phys. Fluids A: Fluid Dyn. 4, 581605 (1992).
http://dx.doi.org/10.1063/1.858329
13.
N. J. Zabusky, O. N. Boratav, R. B. Pelz, M. Gao, D. Silver, and S. P. Cooper, “Emergence of coherent patterns of vortex stretching during reconnection: A scattering paradigm,” Phys. Rev. Lett. 67, 24692472 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2469
14.
A. Pumir and R. M. Kerr, “Numerical simulation of interacting vortex tubes,” Phys. Rev. Lett. 58, 16361639 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1636
15.
M. Melander and F. Hussain, “Cut-and-connect of two antiparallel vortex tubes,” in Studying Turbulence Using Numerical Simulation Databases, 2 (Center for Turbulence Research Proceedings, 1988), pp. 257286.
16.
M. J. Shelley, D. I. Meiron, and S. A. Orszag, “Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes,” J. Fluid Mech. 246, 613652 (1993).
http://dx.doi.org/10.1017/S0022112093000291
17.
R. M. Kerr and F. Hussain, “Simulation of vortex reconnection,” Physica D 37, 474484 (1989).
http://dx.doi.org/10.1016/0167-2789(89)90151-6
18.
R. M. Kerr, “Swirling, turbulent vortex rings formed from a chain reaction of reconnection events,” Phys. Fluids 25, 65101 (2013).
http://dx.doi.org/10.1063/1.4807060
19.
W. M. van Rees, F. Hussain, and P. Koumoutsakos, “Vortex tube reconnection at Re = 104,” Phys. Fluids 24, 075105 (2012).
http://dx.doi.org/10.1063/1.4731809
20.
M. V. Melander and F. Hussain, “Cross-linking of two antiparallel vortex tubes,” Phys. Fluids A: Fluid Dyn. 1, 633636 (1989).
http://dx.doi.org/10.1063/1.857437
21.
W. M. van Rees, A. Leonard, D. I. Pullin, and P. Koumoutsakos, “A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers,” J. Comput. Phys. 230, 27942805 (2011).
http://dx.doi.org/10.1016/j.jcp.2010.11.031
22.
Q. Ni, F. Hussain, J. Wang, and S. Chen, “Analysis of Reynolds number scaling for viscous vortex reconnection,” Phys. Fluids 24, 105102 (2012).
http://dx.doi.org/10.1063/1.4757658
23.
M. V. Melander, J. C. Mcwilliams, and N. J. Zabusky, “Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation,” J. Fluid Mech. 178, 137159 (1987).
http://dx.doi.org/10.1017/S0022112087001150
24.
D. S. Pradeep and F. Hussain, “Effects of boundary condition in numerical simulations of vortex dynamics,” J. Fluid Mech. 516, 115124 (2004).
http://dx.doi.org/10.1017/S002211200400076X
25.
P. Otheguy, J.-M. Chomaz, and P. Billant, “Elliptic and zigzag instabilities on co-rotating vertical vortices in a stratified fluid,” J. Fluid Mech. 553, 253 (2006).
http://dx.doi.org/10.1017/S0022112006008901
26.
C. Roy, N. Schaeffer, S. Le Dizès, and M. Thompson, “Stability of a pair of co-rotating vortices with axial flow,” Phys. Fluids 20, 094101 (2008).
http://dx.doi.org/10.1063/1.2967935
27.
D. J. Tritton, Physical Fluid Dynamics, Oxford Science Publications (Clarendon Press, 1988).
28.
S. A. Orszag and G. S. Patterson, “Numerical simulation of three-dimensional homogeneous isotropic turbulence,” Phys. Rev. Lett. 28, 7679 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.76
29.
C. Canuto, Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation (Springer, Berlin Heidelberg, 2007).
30.
R. S. Rogallo, “An ILLIAC program for the numerical simulation of homogeneous incompressible turbulence,” NASA STI/Recon Technical Report N, Vol. 78, p. 13367, 1977.
31.
P. Chatelain, D. Kivotides, and A. Leonard, “Reconnection of colliding vortex rings,” Phys. Rev. Lett. 90, 54501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.054501
32.
J. Z. Wu, H. Ma, and D. Zhou, Vorticity and Vortex Dynamics, Lecture Notes in Mathematics (Springer, Berlin Heidelberg, 2007).
33.
P. G. Drazin and W. H. Reid, in Hydrodynamic Stability, Cambridge Mathematical Library (Cambridge University Press, 2004), Chap. 31.9.
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/9/10.1063/1.4961078
Loading
/content/aip/journal/pof2/28/9/10.1063/1.4961078
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/9/10.1063/1.4961078
2016-09-02
2016-09-30

Abstract

This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number ( ≡ circulation/viscosity = 104) and finer resolution ( 3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale is investigated in the range 500 ≤ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as is increased from to , thus providing quantitative support for previous claims that the reconnection physics of two vortices should be similar regardless of their spatial arrangement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/9/1.4961078.html;jsessionid=YpaUQBfDt57tc-ShqridoEZf.x-aip-live-03?itemId=/content/aip/journal/pof2/28/9/10.1063/1.4961078&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/9/10.1063/1.4961078&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/9/10.1063/1.4961078'
Right1,Right2,Right3,