Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/pof2/28/9/10.1063/1.4961466
1.
J. C. Wyngaard, “The effect of velocity sensitivity on temperature derivative statistics in isotropic turbulence,” J. Fluid Mech. 48, 763769 (1971).
http://dx.doi.org/10.1017/S0022112071001836
2.
A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds number,” Dokl. Akad. Nauk SSSR 30, 299303 (1941b); (see also Proc. R. Soc. Lond. A434, 9-13 (1991)).
3.
A. M. Oboukhov, “Structure of the temperature field in turbulent flows,” Izv. Akad. Nauk. SSSR Geogr. Geofiz 13, 5869 (1949).
4.
A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13, 8285 (1962).
http://dx.doi.org/10.1017/S0022112062000518
5.
A. M. Obukhov, “Some specific features of atmospheric turbulence,” J. Fluid Mech. 13, 7781 (1962).
http://dx.doi.org/10.1017/S0022112062000506
6.
A. N. Kolmogorov, “Dissipation of energy in the locally isotropic turbulence,” Dokl. Akad. Nauk SSSR 32, 1921 (1941a); (see also “Turbulence and Stochastic Process: Kolmogorov’s ideas 50 years on,” Proc.: Math. Phys. Sci.434, 15-17 (1980)).
7.
A. M. Yaglom, “On the local structure of a temperature field in a turbulent flow,” Dokl. Akad. Nauk SSSR 69, 743746 (1949).
8.
A. S. Monin and A. M. Yaglom, Statistical Fluid Dynamics (MIT, 2007), Vol. 2.
9.
R. A. Antonia and P. Burattini, “Approach to the 4/5 law in homogeneous isotropic turbulence,” J. Fluid Mech. 550, 175184 (2006).
http://dx.doi.org/10.1017/S0022112005008438
10.
V. L’vov and I. Procaccia, “Intermittency in hydrodynamic turbulence as intermediate asymptotics to Kolmogorov scaling,” Phys. Rev. Lett. 74, 2690 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2690
11.
J. Qian, “Inertial range and the finite Reynolds number effect of turbulence,” Phys. Rev. E 55, 337342 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.337
12.
J. Qian, “Normal and anomalous scaling of turbulence,” Phys. Rev. E 58, 7325 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.7325
13.
S. L. Tang, R. A. Antonia, L. Djenidi, L. Djenidi, and Y. Zhou, “Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions,” J. Fluid Mech. (submitted).
14.
K. Sreenivasan and R. A. Antonia, “The phenomenology of small-scale turbulence,” Annu. Rev. Fluid Mech. 29, 435472 (1997).
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
15.
Z. Warhaft, “Passive scalars in turbulent flows,” Annu. Rev. Fluid Mech. 32, 203240 (2000).
http://dx.doi.org/10.1146/annurev.fluid.32.1.203
16.
P. Chassaing, R. A. Antonia, F. Anselmet, L. Joly, and S. Sarkar, Variable Density Fluid Turbulence (Springer Science & Business Media, 2013).
17.
R. A. Antonia, S. L. Tang, L. Djenidi, and L. Danaila, “Boundedness of the velocity derivative skewness in various turbulent flows,” J. Fluid Mech. 781, 727744 (2015).
http://dx.doi.org/10.1017/jfm.2015.539
18.
F. Thiesset, R. A. Antonia, and L. Djenidi, “Consequences of self-preservation on the axis of a turbulent round jet,” J. Fluid Mech. 748, 11 (2014).
http://dx.doi.org/10.1017/jfm.2014.235
19.
S. L. Tang, R. A. Antonia, L. Djenidi, H. Abe, T. Zhou, L. Danaila, and Y. Zhou, “Transport equation for the mean turbulent energy dissipation rate on the centreline of a fully developed channel flow,” J. Fluid Mech. 777, 151177 (2015).
http://dx.doi.org/10.1017/jfm.2015.342
20.
S. L. Tang, R. A. Antonia, L. Djenidi, and Y. Zhou, “Transport equation for the isotropic turbulent energy dissipation rate in the far-wake of a circular cylinder,” J. Fluid Mech. 784, 109129 (2015).
http://dx.doi.org/10.1017/jfm.2015.597
21.
J. Qian, “Skewness factor of turbulent velocity derivative,” Acta Mech. Sin. 10, 1215 (1994).
http://dx.doi.org/10.1007/BF02487653
22.
R. A. Antonia, L. Djenidi, and L. Danaila, “Collapse of the turbulent dissipation range on Kolmogorov scales,” Phys. Fluids 26, 045105 (2014).
http://dx.doi.org/10.1063/1.4869305
23.
R. M. Kerr, “Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence,” J. Fluid Mech. 153, 3158 (1985).
http://dx.doi.org/10.1017/S0022112085001136
24.
L. Danaila, F. Anselmet, T. Zhou, and R. A. Antonia, “A generalization of Yaglom’s equation which accounts for the large-scale forcing in heated decaying turbulence,” J. Fluid Mech. 391, 359372 (1999).
http://dx.doi.org/10.1017/S0022112099005418
25.
L. Danaila and L. Mydlarski, “Effect of gradient production on scalar fluctuations in decaying grid turbulence,” Phys. Rev. E 64, 016316 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.016316
26.
L. Djenidi and R. A. Antonia, “A general self-preservation analysis for decaying homogeneous isotropic turbulence,” J. Fluid Mech. 773, 345365 (2015).
http://dx.doi.org/10.1017/jfm.2015.250
27.
L. Djenidi, M. Kamruzzaman, and R. A. Antonia, “Power-law exponent in the transition period of decay in grid turbulence,” J. Fluid Mech. 779, 544555 (2015).
http://dx.doi.org/10.1017/jfm.2015.428
28.
C. G. Speziale and P. S. Bernard, “The energy decay in self-preserving isotropic turbulence revisited,” J. Fluid Mech. 241, 645667 (1992).
http://dx.doi.org/10.1017/S0022112092002180
29.
S. K. Lee, L. Djenidi, R. A. Antonia, and L. Danaila, “On the destruction coefficients for slightly heated decaying grid turbulence,” Int. J. Heat Fluid Flow 43, 129136 (2013).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2013.03.009
30.
D. Fukayama, T. Oyamada, T. Nakano, T. Gotoh, and K. Yamamoto, “Longitudinal structure functions in decaying and forced turbulence,” J. Phys. Soc. Jpn. 69, 701715 (2000).
http://dx.doi.org/10.1143/JPSJ.69.701
31.
T. Gotoh, D. Fukayama, and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation,” Phys. Fluids 14, 10651081 (2002).
http://dx.doi.org/10.1063/1.1448296
32.
S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469473 (1951).
http://dx.doi.org/10.1063/1.1699986
33.
P. K. Yeung, S. Xu, and K. R. Sreenivasan, “Schmidt number effects on turbulent transport with uniform mean scalar gradient,” Phys. Fluids 14, 41784191 (2002).
http://dx.doi.org/10.1063/1.1517298
34.
R. A. Antonia and P. Orlandi, “Effect of Schmidt number on small-scale passive scalar turbulence,” Appl. Mech. Rev. 56, 615632 (2003).
http://dx.doi.org/10.1115/1.1581885
35.
D. A. Donzis, K. R. Sreenivasan, and P. K. Yeung, “The Batchelor spectrum for mixing of passive scalars in isotropic turbulence,” Flow, Turbul. Combust. 85, 549566 (2010).
http://dx.doi.org/10.1007/s10494-010-9271-6
36.
T. Gotoh and T. Watanabe, “Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence,” Physica D 241, 141148 (2012).
http://dx.doi.org/10.1016/j.physd.2010.12.009
37.
T. Watanabe and T. Gotoh, “Statistics of a passive scalar in homogeneous turbulence,” New J. Phys. 6, 40 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/040
38.
T. Watanabe and T. Gotoh, “Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence,” J. Fluid Mech. 590, 117146 (2007).
http://dx.doi.org/10.1017/S0022112007008002
39.
L.-P. Wang, S. Chen, and J. G. Brasseur, “Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. II. Passive scalar field,” J. Fluid Mech. 400, 163197 (1999).
http://dx.doi.org/10.1017/S0022112099006448
40.
M. Gauding, “Statistics and scaling laws of turbulent scalar mixing at high Reynolds numbers,” Ph.D. thesis, RWTH Aachen University, 2014.
41.
R. A. Antonia, R. J. Smalley, T. Zhou, F. Anselmet, and L. Danaila, “Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence,” Phys. Rev. E 69, 016305 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.016305
42.
S. K. Lee, A. Benaissa, L. Djenidi, P. Lavoie, and R. A. Antonia, “Scaling range of velocity and passive scalar spectra in grid turbulence,” Phys. Fluids 24, 075101 (2012).
http://dx.doi.org/10.1063/1.4731295
43.
A. Berajeklian and L. Mydlarski, “Simultaneous velocity-temperature measurements in the heated wake of a cylinder with implications for the modeling of turbulent passive scalars,” Phys. Fluids 23, 055107 (2011).
http://dx.doi.org/10.1063/1.3586802
44.
N. Lefeuvre, L. Djenidi, R. A. Antonia, and T. Zhou, “Turbulent kinetic energy and temperature variance budgets in the far-wake generated by a circular cylinder,” in 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8–11 December 2014.
45.
H. Abe, R. A. Antonia, and H. Kawamura, “Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow,” J. Fluid Mech. 627, 132 (2009).
http://dx.doi.org/10.1017/S0022112008005569
46.
R. A. Antonia, T. Zhou, L. Danaila, and F. Anselmet, “Streamwise inhomogeneity of decaying grid turbulence,” Phys. Fluids 12, 3086 (2000).
http://dx.doi.org/10.1063/1.1314336
47.
L. Mydlarski and Z. Warhaft, “Passive scalar statistics in high-Peclet-number grid turbulence,” J. Fluid Mech. 358, 135175 (1998).
http://dx.doi.org/10.1017/S0022112097008161
48.
T. Gotoh, T. Watanabe, and Y. Suzuki, “Universality and anisotropy in passive scalar fluctuations in turbulence with uniform mean gradient,” J. Turbul. 12, 127 (2011).
http://dx.doi.org/10.1080/14685248.2011.631926
49.
L. Mydlarski, “Mixed velocity–passive scalar statistics in high-Reynolds-number turbulence,” J. Fluid Mech. 475, 173203 (2003).
http://dx.doi.org/10.1017/S0022112002002756
50.
R. A. Antonia and H. Abe, “Analogy between small-scale velocity and passive scalar fields in a turbulent channel flow,” in Euromech Colloquium (Acad. Sci. Torino, Torino, Italy, 2009), Vol. 512, pp. 2629.
51.
R. A. Antonia and L. W. Browne, “Anisotropy of temperature dissipation in a turbulent wake,” J. Fluid Mech. 163, 393403 (1986).
http://dx.doi.org/10.1017/S0022112086002343
52.
R. Antonia and J. Mi, “Temperature dissipation in a turbulent round jet,” J. Fluid Mech. 250, 531551 (1993).
http://dx.doi.org/10.1017/S0022112093001557
53.
A. Darisse, J. Lemay, and A. Benaïssa, “Extensive study of temperature dissipation measurements on the centerline of a turbulent round jet based on the budget,” Exp. Fluids 55, 115 (2014).
http://dx.doi.org/10.1007/s00348-013-1623-2
54.
R. A. Antonia and A. J. Chambers, “On the correlation between turbulent velocity and temperature derivatives in the atmospheric surface layer,” Boundary-Layer Meteorol. 18, 399410 (1980).
http://dx.doi.org/10.1007/BF00119496
55.
J. C. Wyngaard and H. Tennekes, “Measurements of the small-scale structure of turbulence at moderate Reynolds numbers,” Phys. Fluids 13, 19621969 (1970).
http://dx.doi.org/10.1063/1.1693192
56.
J. L. Lumley, “On third-order mixed moments,” Phys. Fluids 17, 11271129 (1974).
http://dx.doi.org/10.1063/1.1694853
57.
T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, “Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics,” J. Fluid Mech. 592, 335366 (2007).
http://dx.doi.org/10.1017/S0022112007008531
http://aip.metastore.ingenta.com/content/aip/journal/pof2/28/9/10.1063/1.4961466
Loading
/content/aip/journal/pof2/28/9/10.1063/1.4961466
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/pof2/28/9/10.1063/1.4961466
2016-09-01
2016-09-27

Abstract

The transport equation for the mean scalar dissipation rate is derived by applying the limit at small separations to the generalized form of Yaglom’s equation in two types of flows, those dominated mainly by a decay of energy in the streamwise direction and those which are forced, through a continuous injection of energy at large scales. In grid turbulence, the imbalance between the production of due to stretching of the temperature field and the destruction of by the thermal diffusivity is governed by the streamwise advection of by the mean velocity. This imbalance is intrinsically different from that in stationary forced periodic box turbulence (or SFPBT), which is virtually negligible. In essence, the different types of imbalance represent different constraints imposed by the large-scale motion on the relation between the so-called mixed velocity-temperature derivative skewness and the scalar enstrophy destruction coefficient in different flows, thus resulting in non-universal approaches of towards a constant value as increases. The data for collected in grid turbulence and in SFPBT indicate that the magnitude of is bounded, this limit being close to 0.5.

Loading

Full text loading...

/deliver/fulltext/aip/journal/pof2/28/9/1.4961466.html;jsessionid=jEVDQPZf9vvWFH45qjB0A8Je.x-aip-live-03?itemId=/content/aip/journal/pof2/28/9/10.1063/1.4961466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/pof2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=pof.aip.org/28/9/10.1063/1.4961466&pageURL=http://scitation.aip.org/content/aip/journal/pof2/28/9/10.1063/1.4961466'
Right1,Right2,Right3,